Page 128 - IJB-5-1
P. 128
Liu F, et al.
rates and mechanical properties. Biomaterials, 30(14): 2724- s13068-016-0451-z.
2734. https://doi.org/10.1016/j.biomaterials.2009.01.034. 34. Hashimoto M, Hossain S, Masumura S, 1999, Effect of aging
30. Liu F, Hinduja S, Bartolo P, 2018, User interface tool for a on plasma membrane fluidity of rat aortic endothelial cells-.☆
novel plasma-assisted bio-additive extrusion system. Rapid Exp Gerontol, 34(5): 687-698. https://doi.org/10.1016/
Prototyp, 10: 1108.https://doi.org/10.1108/RPJ-07-2016-0115. S0531-5565(99)00025-X.
31. Park K, Ju Y M, Son J S, et al., 2007, Surface modification 35. Wavhal D S, Fisher E R, 2002, Hydrophilic modification of
of biodegradable electrospun nanofiber scaffolds and their polyethersulfone membranes by low temperature plasma-
interaction with fibroblasts. J Biomater Sci Polym , 18(4): induced graft polymerization. J Membr Sci, 209(1): 255-269.
369-382. https://doi.org/10.1163/156856207780424997. https://doi.org/10.1016/S0376-7388(02)00352-6.
32. Thakur S, Neogi S, 2015, Tailoring the adhesion of polymers 36. Pappa A M, Karagkiozaki V, Krol S, et al., 2015, Oxygen-
using plasma for biomedical applications: A critical review. plasma-modified biomimetic nanofibrous scaffolds for
Rev Adhes Adhes, 3(1): 53-97. https://doi.org/10.7569/ enhanced compatibility of cardiovascular implants. Beilstein
RAA.2015.097303. J Nanotechnol, 6: 254. https://doi.org/10.3762/bjnano.6.24.
33. Gross M, Zhao X, Mascarenhas V, et al., 2016, Effects of the 37. Sousa I, Mendes A, Pereira R F, et al., 2014, Collagen surface
surface physico-chemical properties and the surface textures modified poly (ε-caprolactone) scaffolds with improved
on the initial colonization and the attached growth in algal hydrophilicity and cell adhesion properties. Mater Lett, 134:
biofilm. Biotechnol Biofuel, 9(1): 38. https://doi.org/10.1186/ 263-267. https://doi.org/10.1016/j.matlet.2014.06.132.
International Journal of Bioprinting (2019)–Volume 5, Issue 1 9

