Page 51 - IJB-5-2
P. 51

Feng F, et al.
           Acknowledgments                                         Tissue Constructs. Adv Mater, 26(19):2966-6. DOI 10.1002/

           This work was supported by the National Natural Science   adma.201305506.
           Foundation of China (51675412), Shaanxi Key Research   12.  Valentine AD, Busbee TA, Boley JW, et al., 2017, Hybrid
           and  Development  Program  (2017ZDXM-GY-058),  the      3D Printing of Soft Electronics. Adv Mater, 29(40):1703817.
           Youth Innovation Team of Shaanxi Universities and the   DOI 10.1002/adma.201703817.
           Fundamental Research Funds for the Central Universities.  13.  Lind JU, Busbee TA, Valentine AD, et al., 2017, Instrumented

           References                                              Cardiac  Microphysiological  Devices  via  Multimaterial
                                                                   Three-dimensional  Printing.  Nat  Mater,  16(3):303-8.  DOI
           1.   Seidi A, Ramalingam M, Elloumi-Hannachi I, et al., 2011,   10.1038/nmat4782.
               Gradient  Biomaterials  for  Soft-to-hard  Interface  Tissue   14.  Sutanto E, Shigeta K, Kim YK, et al., 2012, A Multimaterial
               Engineering.  Acta Biomater,  7(4):1441-51.  DOI  10.1016/j.  Electrohydrodynamic   Jet   (E-jet)   Printing   System.
               actbio.2011.01.011.                                 J Micromech Microeng, 22(4):45008-18. DOI 10.1088/0960-
           2.   Khademhosseini  A,  Langer  R,  Borenstein  J, et al., 2006,   1317/22/4/045008.
               Microscale Technologies for Tissue Engineering and Biology.   15.  Cheng  Y,  Zheng  F,  Lu  J, et al.,  2014,  Bioinspired
               Proc Natl Acad Sci U S A, 103(8):2480-7.            Multicompartmental  Microfibers  from  Microfluidics.  Adv
           3.   Sakai S, Ueda K, Gantumur E, et al., 2018, Drop-on-drop   Mater, 26(30):5184-90. DOI 10.1002/adma.201400798.
               Multimaterial  3D  Bioprinting  Realized  by  Peroxidase-  16.  Jun Y, Kang E, Chae S, et al., 2014, Microfluidic Spinning
               mediated  Cross-linking.  Macromol Rapid  Commun,   of Micro-and Nano-scale Fibers for Tissue Engineering. Lab
               39(3):1700534. DOI 10.1002/marc.201700534.          Chip, 14(13):2145-60. DOI 10.1039/c3lc51414e.
           4.   Colosi C, Costantini M, Barbetta A, et al., 2016, Microfluidic   17.  Kang  E,  Jeong  GS,  Choi  YY, et al.,  2011,  Digitally
               Bioprinting  of  Heterogeneous  3D  Tissue  Constructs.  Adv   Tunable  Physicochemical  Coding  of  Material  Composition
               Mater, 28(4):677-84. DOI 10.1002/adma.201503310.    and  Topography  in  Continuous  Microfibres.  Nat Mater,
           5.   Rutz AL, Hyland KE, Jakus AE, et al., 2015, A Multimaterial   10(11):877. DOI 10.1038/nmat3108.
               Bioink  Method  for  3D  Printing  Tunable,  Cell-compatible   18.  Ouyang L, Highley CB, Sun W, et al., 2017, A Generalizable
               Hydrogels.  Adv Mater,  27(9):1607-14.  DOI  10.1002/  Strategy for the 3D Bioprinting of Hydrogels from Nonviscous
               adma.201405076                                      Photo-crosslinkable  Inks.  Adv Mater,  29(8):1604983.  DOI
           6.   Kang HW, Sang JL, Ko IK, et al., 2016, A 3D Bioprinting   10.1002/adma.201604983.
               System  to  Produce  Human-scale  Tissue  Constructs  with   19.  Shi  X,  Ostrovidov  S,  Zhao  Y, et al.,  2015,  Microfluidic
               Structural  Integrity.  Nat  Biotechnol,  34(3):312-9.  DOI   Spinning of Cell-responsive Grooved Microfibers. Adv Funct
               10.1038/nbt.3413.                                   Mater, 25(15):2250-9. DOI 10.1002/adfm.201404531.
           7.   Khalil S, Nam J, Sun W, 2005, Multi-nozzle Deposition for   20.  Yu Y, Shang L, Gao W, et al., 2017, Microfluidic Lithography
               Construction  of  3D  Biopolymer  Tissue  Scaffolds.  Rapid   of  Bioinspired  Helical  Micromotors.  Angew Chem Int Ed,
               Prototyp J, 11(1):9-17. DOI 10.1108/13552540510573347.  56(40):12127-31. DOI 10.1002/anie.201705667.
           8.   Shim  JH,  Lee  JS,  Kim  JY, et al.,  2012,  Bioprinting  of  a   21.  Yu  Y,  Wei  W,  Wang  Y,  et  al.,  2016,  Simple  Spinning  of
               Mechanically Enhanced Three-dimensional Dual Cell-laden   Heterogeneous  Hollow  Microfibers  on  Chip.  Adv Mater,
               Construct for Osteochondral Tissue Engineering using a Multi-  28(31):6649. DOI 10.1002/adma.201601504.
               head Tissue/Organ Building System. J Micromech Microeng,   22.  Zhu Y, Wang L, Yin F, et al., 2017, A Hollow Fiber System
               22(8):85014-24. DOI 10.1088/0960-1317/22/8/085014.  for  Simple  Generation  of  Human  Brain  Organoids.  Integr
           9.   Edward  K,  Gi  Seok  J,  Young  CY, et  al.,  2011,  Digitally   Biol, 9(9):774-81. DOI 10.1039/c7ib00080d.
               Tunable  Physicochemical  Coding  of  Material  Composition   23.  Miri AK,  Nieto  D,  Iglesias  L, et  al.,  2018,  Microfluidics-
               and  Topography  in  Continuous  Microfibres.  Nat Mater,   enabled  Multimaterial  Maskless  Stereolithographic
               10(11):877.                                         Bioprinting.  Adv  Mater,  30(27):e1800242.  DOI  10.1002/
           10.  Pati F, Jang J, Ha DH, et al., 2014, Printing Three-dimensional   adma.201800242.
               Tissue Analogues  with  Decellularized  Extracellular  Matrix   24.  Ghorbanian  S,  Qasaimeh  MA,  Akbari  M, et al., 2014,
               Bioink. Nat Commun, 5:3935. DOI 10.1038/ncomms4935.  Microfluidic  Direct  Writer  with  Integrated  Declogging
           11.  Kolesky  DB,  Truby  RL,  Sydney  GA, et  al.,  2014,  3D   Mechanism for Fabricating Cell-laden Hydrogel Constructs.
               Bioprinting  of  Vascularized,  Heterogeneous  Cell-laden   Biomed Microdevices,  16(3):387-95.  DOI  10.1007/s10544-

                                       International Journal of Bioprinting (2019)–Volume 5, Issue 2        47
   46   47   48   49   50   51   52   53   54   55   56