Page 237 - IJB-10-5
P. 237

International Journal of Bioprinting                                        Effect of ingredient flow speed




            Consent for publication                            11.  Lee CP, Karyappa R, Hashimoto M. 3D printing of milk-
                                                                  based product. RSC Adv. 2020;10(50):29821-29828.
            Not applicable.                                       doi: 10.1039/d0ra05035k

            Availability of data                               12.  Zhang L, Lou Y, Schutyser MAI. 3D printing of cereal-
                                                                  based food structures containing probiotics.  Food Struct.
            Data  are  available  from  the  corresponding  author  upon   2018;18:14-22.
            reasonable request.                                   doi: 10.1016/j.foostr.2018.10.002
                                                               13.  Leroy JL, Ruel M, Frongillo EA, et al. Measuring the food
            References                                            access dimension of food security: a critical review and
                                                                  mapping of indicators. Food Nutr Bull. 2015;36(2):167-195.
            1.   Joshi SC, Sheikh AA. 3D printing in aerospace and its      doi: 10.1177/0379572115587274
               long-term sustainability. Virtual Phys Prototyp. 2015;10(4):
               175-185.                                        14.  Pant A, Leam PXN, Chua CK, et al. Valorisation of vegetable
               doi: 10.1080/17452759.2015.1111519                 food waste utilising three-dimensional food printing.
                                                                  Virtual Phys Prototyp. 2022;18(1).
            2.   Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting:      doi: 10.1080/17452759.2022.2146593
               from printing methods to biomedical applications. Asian J   15.  Lee CP, Takahashi M, Arai S, et al. 3D printing of Okara Ink:
               Pharm Sci. 2020;15(5):529-557.                     the effect of particle size on the printability. ACS Food Sci
               doi: 10.1016/j.ajps.2019.11.003
                                                                  Technol. 2021;1(11):2053-2061.
            3.   Lee J-Y, An J, Chua CK. Fundamentals and applications      doi: 10.1021/acsfoodscitech.1c00236
               of 3D printing for novel materials.  Appl Mater Today.   16.  Hussain S, Malakar S, Arora VK. Extrusion-based 3D food
               2017;7:120-133.                                    printing: technological approaches, material characteristics,
               doi: 10.1016/j.apmt.2017.02.004                    printing stability, and post-processing.  Food Eng Rev.
            4.   Lee AY, An J, Chua CK. Two-way 4D printing: a review on   2022;14(1):100-119.
               the  reversibility  of 3D-printed  shape  memory materials.      doi: 10.1007/s12393-021-09293-w
               Engineering 2017;3(5):663-674.                  17.  Voon SL, An J, Wong G, et al. 3D food printing: a categorised
               doi: 10.1016/j.Eng.2017.05.014                     review of inks and their development. Virtual Phys Prototyp.
            5.   Thangalakshmi S, Arora VK. Three-dimensional (3D) food   2019;14(3):203-218.
               printing and its process parameters. In: Sandhu K, Singh S,      doi: 10.1080/17452759.2019.1603508
               (eds) Food Printing: 3D Printing in Food Industry. Singapore:   18.  Chen X, Zhang M, Tang T. Microwave-induced rapid
               Springer; 2022:35-45.                              shape  change  of 4D printed  vegetable-based food.  Foods.
               doi: 10.1007/978-981-16-8121-9_3                   2023;12(11):2158.
            6.   Pant A, Lee AY, Karyappa R, et al. 3D food printing of fresh      doi: 10.3390/foods12112158
               vegetables using food hydrocolloids for dysphagic patients.   19.  Dick A, Bhandari B, Dong X, et al. Feasibility study of
               Food Hydrocoll. 2021;114:106546-106546.            hydrocolloid incorporated 3D printed pork as dysphagia
               doi: 10.1016/J.FOODHYD.2020.106546                 food. Food Hydrocoll. 2020;107:105940.
            7.   Tejada-Ortigoza V, Cuan-Urquizo E. Towards the      doi: 10.1016/j.foodhyd.2020.105940
               development of 3D-printed food: a rheological and   20.  Lipton J, Arnold D, Nigl F, et al. Multi-material Food Printing
               mechanical approach. Foods. 2022;11(9):1191.       with Complex Internal Structure Suitable for Conventional
            8.   Severini C, Azzollini D, Albenzio M, et al. On printability,   Post-processing. Austin, TX: University of Texas at Austin; 2010.
               quality and nutritional properties of 3D printed cereal   21.  Zhang Y, Lee AY, Pojchanun K, et al. Systematic engineering
               based snacks enriched with edible insects.  Food Res Int.   approach for optimization of multi-component alternative
               2018;106:666-676.                                  protein-fortified 3D printing food Ink.  Food  Hydrocoll.
               doi: 10.1016/j.foodres.2018.01.034                 2022;131:107803.
            9.   Liu Z, Bhandari B, Prakash S, et al. Creation of internal      doi: 10.1016/j.foodhyd.2022.107803
               structure of mashed potato construct by 3D printing and its   22.  Liang Y, Chitrakar B, Liu Z, et al. Preparation and
               textural properties. Food Res Int. 2018;111:534-543.   characterization of 3D-printed antibacterial hydrogel with
               doi: 10.1016/j.foodres.2018.05.075                 benzyl isothiocyanate. Int J Bioprint. 2023;9(2):671.
                                                                  doi: 10.18063/ijb.v9i2.671
            10.  Guénard-Lampron V, Masson M, Leichtnam O, et al.
               Impact of 3D printing and post-processing parameters on   23.  Suntornnond R, Tan EYS, An J, et al. A mathematical
               shape, texture and microstructure of carrot appetizer cake.   model on the resolution of extrusion bioprinting for the
               Innovative Food Sci Emerg Technol. 2021;72:102738.  development of new bioinks. Materials. 2016;9(9):756.
               doi: 10.1016/j.ifset.2021.102738                   doi: 10.3390/ma9090756


            Volume 10 Issue 5 (2024)                       229                                doi: 10.36922/ijb.2787
   232   233   234   235   236   237   238   239   240   241   242