Page 261 - IJB-10-5
P. 261
International Journal of Bioprinting 3D printed hydrogels for tumor therapy
doi: 10.1016/j.jconrel.2022.12.037 doi: 10.1002/adfm.202105002
11. Chen S, Tan S, Zheng L, Wang M. Multilayered shape- 23. Wang Y, Chen SS, Liang HW, Liu Y, Bai JM, Wang M. Digital
morphing scaffolds with a hierarchical structure for light processing (DLP) of nano biphasic calcium phosphate
uterine tissue regeneration. ACS Appl Mater Interfaces. bioceramic for making bone tissue engineering scaffolds.
2024;16(6):6772-6788. Ceram Int. 2022;48(19):27681-27692.
doi: 10.1021/acsami.3c14983 doi: 10.1016/j.ceramint.2022.06.067
12. Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds 24. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-
for bone regeneration. J Sci: Adv Mater Devices. 2020; concentration cell-laden gelatin methacrylate (GelMA)
5(1):1-9. bioinks with a two-step cross-linking strategy. ACS Appl
doi: 10.1016/j.jsamd.2020.01.007 Mater Interfaces. 2018;10(8):6849-6857.
doi: 10.1021/acsami.7b16059
13. Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF
loaded 3D printed hydroxyapatite composite scaffolds with 25. Guo A, Zhang S, Yang R, Sui C. Enhancing the
enhanced osteogenic capacity in vitro and in vivo. Mater Sci mechanical strength of 3D printed GelMA for soft
Eng C Mater Biol Appl. 2020;112:110893. tissue engineering applications. Mater Today Bio. 2024;
doi: 10.1016/j.msec.2020.110893 24:100939.
doi: 10.1016/j.mtbio.2023.100939
14. Bose S, Roy M, Bandyopadhyay A. Recent advances in
bone tissue engineering scaffolds. Trends Biotechnol. 26. Chen S, Wang Y, Lai J, Tan S, Wang M. Structure and
2012;30(10):546-554. properties of gelatin methacryloyl (GelMA) synthesized
doi: 10.1016/j.tibtech.2012.07.005 in different reaction systems. Biomacromolecules.
2023;24(6):2928-2941.
15. Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue
engineering: state of the art and new perspectives. Mater Sci doi: 10.1021/acs.biomac.3c00302
Eng C Mater Biol Appl. 2017;78:1246-1262. 27. Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA
doi: 10.1016/j.msec.2017.05.017 hydrogel promotes osteochondral regeneration through M2
macrophage polarization in a rabbit model. Acta Biomater.
16. Lai J, Wang C, Liu J, et al. Low temperature hybrid 3D
printing of hierarchically porous bone tissue engineering 2021;128:150-162.
scaffolds within situdelivery of osteogenic peptide and doi: 10.1016/j.actbio.2021.04.010
mesenchymal stem cells. Biofabrication. 2022;14(4):045006. 28. Xu C, Chang Y, Xu Y, et al. Silicon-phosphorus-nanosheets-
doi: 10.1088/1758-5090/ac84b0 integrated 3D-printable hydrogel as a bioactive and
biodegradable scaffold for vascularized bone regeneration.
17. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of
scaffolds for tissue regeneration applications. Adv Healthc Adv Healthc Mater. 2022;11(6):e2101911.
Mater. 2015;4(12):1742-1762. doi: 10.1002/adhm.202101911
doi: 10.1002/adhm.201500168 29. Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced
graphene oxide-GelMA hybrid hydrogel scaffolds for
18. Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational
3D printing for cartilage, bone, and osteochondral tissue potential neuralized bone regeneration. J Mater Chem B.
engineering. Small. 2022;18(36):e2201869. 2023;11(6):1288-1301.
doi: 10.1002/smll.202201869 doi: 10.1039/d2tb01979e
30. Xavier Mendes A, Moraes Silva S, O’Connell CD, et al.
19. MacDonald E, Wicker R. Multiprocess 3D printing
for increasing component functionality. Science. Enhanced electroactivity, mechanical properties, and
2016;353(6307):aaf2093. printability through the addition of graphene oxide to
doi: 10.1126/science.aaf2093 photo-cross-linkable gelatin methacryloyl hydrogel. ACS
Biomater Sci Eng. 2021;7(6):2279-2295.
20. Velasquez-Garcia LF, Kornbluth Y. Biomedical applications doi: 10.1021/acsbiomaterials.0c01734
of metal 3D printing. Annu Rev Biomed Eng. 2021;23:
307-338. 31. Choi E, Kim D, Kang D, et al. 3D-printed gelatin
doi: 10.1146/annurev-bioeng-082020-032402 methacrylate (GelMA)/silanated silica scaffold assisted by
two-stage cooling system for hard tissue regeneration. Regen
21. Ratheesh G, Vaquette C, Xiao Y. Patient-specific bone Biomater. 2021;8(2):rbab001.
particles bioprinting for bone tissue engineering. Adv doi: 10.1093/rb/rbab001
Healthc Mater. 2020;9(23):e2001323.
doi: 10.1002/adhm.202001323 32. Gui XY, Zhang BQ, Song P, et al. 3D printing of biomimetic
hierarchical porous architecture scaffold with dual
22. Van hede D, Liang B, Anania S, et al. 3D‐printed osteoinduction and osteoconduction biofunctions for
synthetic hydroxyapatite scaffold with in silico optimized large size bone defect repair. Appl Mater Today. 2024;
macrostructure enhances bone formation in vivo. Adv Funct 37:102085.
Mater. 2021;32(6):2105002. doi: 10.1016/j.apmt.2024.102085
Volume 10 Issue 5 (2024) 253 doi: 10.36922/ijb.3526

