Page 261 - IJB-10-5
P. 261

International Journal of Bioprinting                                  3D printed hydrogels for tumor therapy




               doi: 10.1016/j.jconrel.2022.12.037                 doi: 10.1002/adfm.202105002
            11.  Chen S, Tan S, Zheng L, Wang M. Multilayered shape-  23.  Wang Y, Chen SS, Liang HW, Liu Y, Bai JM, Wang M. Digital
               morphing  scaffolds with  a  hierarchical  structure  for   light processing (DLP) of nano biphasic calcium phosphate
               uterine tissue regeneration.  ACS Appl Mater Interfaces.   bioceramic for making bone tissue engineering scaffolds.
               2024;16(6):6772-6788.                              Ceram Int. 2022;48(19):27681-27692.
               doi: 10.1021/acsami.3c14983                        doi: 10.1016/j.ceramint.2022.06.067
            12.  Abbasi N, Hamlet S, Love RM, Nguyen NT. Porous scaffolds   24.  Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-
               for bone regeneration.  J Sci: Adv Mater Devices. 2020;   concentration cell-laden gelatin methacrylate (GelMA)
               5(1):1-9.                                          bioinks with a two-step cross-linking strategy.  ACS Appl
               doi: 10.1016/j.jsamd.2020.01.007                   Mater Interfaces. 2018;10(8):6849-6857.
                                                                  doi: 10.1021/acsami.7b16059
            13.  Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF
               loaded 3D printed hydroxyapatite composite scaffolds with   25.  Guo A, Zhang S, Yang R, Sui C. Enhancing the
               enhanced osteogenic capacity in vitro and in vivo. Mater Sci   mechanical  strength  of  3D  printed  GelMA  for  soft
               Eng C Mater Biol Appl. 2020;112:110893.            tissue engineering applications.  Mater Today Bio. 2024;
               doi: 10.1016/j.msec.2020.110893                    24:100939.
                                                                  doi: 10.1016/j.mtbio.2023.100939
            14.  Bose S, Roy M, Bandyopadhyay A. Recent advances in
               bone tissue engineering scaffolds.  Trends Biotechnol.   26.  Chen S, Wang Y, Lai J, Tan S, Wang M. Structure and
               2012;30(10):546-554.                               properties  of  gelatin  methacryloyl  (GelMA)  synthesized
               doi: 10.1016/j.tibtech.2012.07.005                 in  different  reaction  systems.  Biomacromolecules.
                                                                  2023;24(6):2928-2941.
            15.  Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue
               engineering: state of the art and new perspectives. Mater Sci      doi: 10.1021/acs.biomac.3c00302
               Eng C Mater Biol Appl. 2017;78:1246-1262.       27.  Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA
               doi: 10.1016/j.msec.2017.05.017                    hydrogel promotes osteochondral regeneration through M2
                                                                  macrophage polarization in a rabbit model. Acta Biomater.
            16.  Lai J, Wang C, Liu J, et al. Low temperature hybrid 3D
               printing of hierarchically porous bone tissue engineering   2021;128:150-162.
               scaffolds within situdelivery of osteogenic peptide and      doi: 10.1016/j.actbio.2021.04.010
               mesenchymal stem cells. Biofabrication. 2022;14(4):045006.  28.  Xu C, Chang Y, Xu Y, et al. Silicon-phosphorus-nanosheets-
               doi: 10.1088/1758-5090/ac84b0                      integrated 3D-printable hydrogel as a bioactive and
                                                                  biodegradable scaffold for vascularized bone regeneration.
            17.  Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of
               scaffolds for tissue regeneration applications.  Adv Healthc   Adv Healthc Mater. 2022;11(6):e2101911.
               Mater. 2015;4(12):1742-1762.                       doi: 10.1002/adhm.202101911
               doi: 10.1002/adhm.201500168                     29.  Zhang X, Zhang H, Zhang Y, et al. 3D printed reduced
                                                                  graphene oxide-GelMA hybrid hydrogel scaffolds for
            18.  Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational
               3D printing for cartilage, bone, and osteochondral tissue   potential neuralized bone regeneration.  J Mater Chem B.
               engineering. Small. 2022;18(36):e2201869.          2023;11(6):1288-1301.
               doi: 10.1002/smll.202201869                        doi: 10.1039/d2tb01979e
                                                               30.  Xavier Mendes A, Moraes Silva S, O’Connell CD, et al.
            19.  MacDonald E, Wicker R. Multiprocess 3D printing
               for  increasing  component  functionality.  Science.   Enhanced electroactivity, mechanical properties, and
               2016;353(6307):aaf2093.                            printability through the addition of graphene oxide to
               doi: 10.1126/science.aaf2093                       photo-cross-linkable gelatin methacryloyl hydrogel.  ACS
                                                                  Biomater Sci Eng. 2021;7(6):2279-2295.
            20.  Velasquez-Garcia LF, Kornbluth Y. Biomedical applications      doi: 10.1021/acsbiomaterials.0c01734
               of metal 3D  printing.  Annu Rev Biomed Eng. 2021;23:
               307-338.                                        31.  Choi E, Kim D, Kang D, et al. 3D-printed gelatin
               doi: 10.1146/annurev-bioeng-082020-032402          methacrylate  (GelMA)/silanated  silica  scaffold  assisted  by
                                                                  two-stage cooling system for hard tissue regeneration. Regen
            21.  Ratheesh G, Vaquette C, Xiao Y. Patient-specific bone   Biomater. 2021;8(2):rbab001.
               particles bioprinting for bone tissue engineering.  Adv      doi: 10.1093/rb/rbab001
               Healthc Mater. 2020;9(23):e2001323.
               doi: 10.1002/adhm.202001323                     32.  Gui XY, Zhang BQ, Song P, et al. 3D printing of biomimetic
                                                                  hierarchical porous architecture scaffold with dual
            22.  Van hede D, Liang B, Anania S, et al. 3D‐printed   osteoinduction and osteoconduction biofunctions for
               synthetic hydroxyapatite  scaffold  with  in  silico  optimized   large size bone defect repair.  Appl Mater  Today. 2024;
               macrostructure enhances bone formation in vivo. Adv Funct   37:102085.
               Mater. 2021;32(6):2105002.                         doi: 10.1016/j.apmt.2024.102085


            Volume 10 Issue 5 (2024)                       253                                doi: 10.36922/ijb.3526
   256   257   258   259   260   261   262   263   264   265   266