Page 262 - IJB-10-5
P. 262

International Journal of Bioprinting                                  3D printed hydrogels for tumor therapy




            33.  Pu X, Tong L, Wang X, et al. Bioinspired hydrogel anchoring      doi: 10.1002/Exp.20230141
               3DP GelMA/HAp scaffolds accelerates bone reconstruction.   44.  Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR,
               ACS Appl Mater Interfaces. 2022;14(18):20591-20602.  Kim  K.  Designing  gelatin  methacryloyl  (GelMA)-based
               doi: 10.1021/acsami.1c25015
                                                                  bioinks for visible light stereolithographic 3D biofabrication.
            34.  Song P, Li MX, Zhang BQ, et al. DLP fabricating of precision   Macromol Biosci. 2021;21(1):e2000317.
               GelMA/HAp porous composite scaffold for bone tissue      doi: 10.1002/mabi.202000317
               engineering application. Compos B Eng. 2022;244:110163.  45.  Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and
               doi: 10.1016/j.compositesb.2022.110163             characterization of types A and B gelatin methacryloyl for
            35.  Chen S, Shi Y, Zhang X, Ma J. Biomimetic synthesis of   bioink applications. Materials (Basel). 2016;9(10):797.
               Mg-substituted  hydroxyapatite  nanocomposites  and     doi: 10.3390/ma9100797
               three-dimensional printing of composite scaffolds for   46.  Wang Z, Duan Y, Duan Y. Application of polydopamine in
               bone regeneration.  J Biomed  Mater Res A. 2019;107(11):   tumor targeted drug delivery system and its drug release
               2512-2521.                                         behavior. J Control Release. 2018;290:56-74.
               doi: 10.1002/jbm.a.36757                           doi: 10.1016/j.jconrel.2018.10.009
            36.  Zhou H, Liang B, Jiang HT, Deng ZL, Yu KX. Magnesium-  47.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
               based biomaterials as emerging agents for bone repair and   Annabi N, Khademhosseini A. Synthesis, properties, and
               regeneration: from mechanism to application.  J Magnes   biomedical applications of gelatin methacryloyl (GelMA)
               Alloy. 2021;9(3):779-804.                          hydrogels. Biomaterials. 2015;73:254-271.
               doi: 10.1016/j.jma.2021.03.004                     doi: 10.1016/j.biomaterials.2015.08.045
            37.  Chen S, Wang Y, Zhang X, Ma J, Wang M. Double-  48.  Outrequin TCR, Gamonpilas C, Siriwatwechakul W,
               crosslinked bifunctional hydrogels with encapsulated anti-  Sreearunothai P. Extrusion-based 3D printing of food
               cancer drug for bone tumor cell ablation and bone tissue   biopolymers: a highlight on the important rheological
               regeneration. Colloids Surf B Biointerfaces. 2022;213:112364.  parameters to reach printability.  J  Food  Eng. 2023;
               doi: 10.1016/j.colsurfb.2022.112364                342:111371.
            38.  Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties      doi: 10.1016/j.jfoodeng.2022.111371
               on printability and cell viability for 3D bioplotting of   49.  Sanchez-Sanchez R, Rodriguez-Rego JM, Macias-Garcia
               embryonic stem cells. Biofabrication. 2016;8(3):035020.  A, Mendoza-Cerezo L, Diaz-Parralejo A. Relationship
               doi: 10.1088/1758-5090/8/3/035020                  between  shear-thinning  rheological  properties  of
            39.  Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly   bioinks and bioprinting parameters.  Int J Bioprint. 2023;
               of apatite hybrid materials: from a single molecular   9(2):687.
               template to bi-/multi-molecular templates. Biotechnol Adv.      doi: 10.18063/ijb.687
               2014;32(4):744-60.                              50.  Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’
               doi: 10.1016/j.biotechadv.2013.10.014              of candidate biomaterials for extrusion based 3D printing:
            40.  Luo Y, Chen S, Shi Y, Ma J. 3D printing of strontium-doped   state-of-the-art. Adv Healthc Mater. 2017;6(16):1700264.
               hydroxyapatite based composite scaffolds for repairing      doi: 10.1002/adhm.201700264
               critical-sized rabbit calvarial defects.  Biomed Mater.   51.  Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.
               2018;13(6):065004.                                 Printability and shape fidelity of bioinks in 3D bioprinting.
               doi: 10.1088/1748-605X/aad923                      Chem Rev. 2020;120(19):11028-11055.
            41.  Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-     doi: 10.1021/acs.chemrev.0c00084
               functionalized  magnesium-organic  framework-based  52.  Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting
               scaffolds with osteogenic, angiogenic and anti-inflammatory   of gelatin methacryloyl-based constructs with highly
               properties for accelerated bone regeneration. Bioact Mater.   tunable structural fidelity.  ACS Appl Mater Interfaces.
               2022;18:26-41.                                     2020;12(40):44563-44577.
               doi: 10.1016/j.bioactmat.2022.02.012               doi: 10.1021/acsami.0c15078
            42.  Antoniac IV, Antoniac A, Vasile E, et al. In vitro   53.  Mora-Boza A, Wlodarczyk-Biegun MK, Del Campo A,
               characterization  of  novel nanostructured  collagen-  Vazquez-Lasa B, Roman JS. Glycerylphytate as an ionic
               hydroxyapatite composite scaffolds doped with magnesium   crosslinker for 3D printing of multi-layered scaffolds with
               with improved biodegradation rate for hard tissue   improved shape fidelity and biological features.  Biomater
               regeneration. Bioact Mater. 2021;6(10):3383-3395.  Sci. 2019;8(1):506-516.
               doi: 10.1016/j.bioactmat.2021.02.030               doi: 10.1039/c9bm01271k
            43.  Chen SS, Li JZ, Zheng LW, Huang J, Wang M. Biomimicking   54.  Latif M, Jiang Y, Kumar B, Song JM, Cho HC, Kim J.
               trilayer scaffolds with controlled estradiol release for uterine   High content nanocellulose 3D‐printed and esterified
               tissue regeneration. Exploration. 2024:20230141.   structures with strong interfacial adhesion, high mechanical

            Volume 10 Issue 5 (2024)                       254                                doi: 10.36922/ijb.3526
   257   258   259   260   261   262   263   264   265   266   267