Page 262 - IJB-10-5
P. 262
International Journal of Bioprinting 3D printed hydrogels for tumor therapy
33. Pu X, Tong L, Wang X, et al. Bioinspired hydrogel anchoring doi: 10.1002/Exp.20230141
3DP GelMA/HAp scaffolds accelerates bone reconstruction. 44. Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR,
ACS Appl Mater Interfaces. 2022;14(18):20591-20602. Kim K. Designing gelatin methacryloyl (GelMA)-based
doi: 10.1021/acsami.1c25015
bioinks for visible light stereolithographic 3D biofabrication.
34. Song P, Li MX, Zhang BQ, et al. DLP fabricating of precision Macromol Biosci. 2021;21(1):e2000317.
GelMA/HAp porous composite scaffold for bone tissue doi: 10.1002/mabi.202000317
engineering application. Compos B Eng. 2022;244:110163. 45. Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and
doi: 10.1016/j.compositesb.2022.110163 characterization of types A and B gelatin methacryloyl for
35. Chen S, Shi Y, Zhang X, Ma J. Biomimetic synthesis of bioink applications. Materials (Basel). 2016;9(10):797.
Mg-substituted hydroxyapatite nanocomposites and doi: 10.3390/ma9100797
three-dimensional printing of composite scaffolds for 46. Wang Z, Duan Y, Duan Y. Application of polydopamine in
bone regeneration. J Biomed Mater Res A. 2019;107(11): tumor targeted drug delivery system and its drug release
2512-2521. behavior. J Control Release. 2018;290:56-74.
doi: 10.1002/jbm.a.36757 doi: 10.1016/j.jconrel.2018.10.009
36. Zhou H, Liang B, Jiang HT, Deng ZL, Yu KX. Magnesium- 47. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
based biomaterials as emerging agents for bone repair and Annabi N, Khademhosseini A. Synthesis, properties, and
regeneration: from mechanism to application. J Magnes biomedical applications of gelatin methacryloyl (GelMA)
Alloy. 2021;9(3):779-804. hydrogels. Biomaterials. 2015;73:254-271.
doi: 10.1016/j.jma.2021.03.004 doi: 10.1016/j.biomaterials.2015.08.045
37. Chen S, Wang Y, Zhang X, Ma J, Wang M. Double- 48. Outrequin TCR, Gamonpilas C, Siriwatwechakul W,
crosslinked bifunctional hydrogels with encapsulated anti- Sreearunothai P. Extrusion-based 3D printing of food
cancer drug for bone tumor cell ablation and bone tissue biopolymers: a highlight on the important rheological
regeneration. Colloids Surf B Biointerfaces. 2022;213:112364. parameters to reach printability. J Food Eng. 2023;
doi: 10.1016/j.colsurfb.2022.112364 342:111371.
38. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties doi: 10.1016/j.jfoodeng.2022.111371
on printability and cell viability for 3D bioplotting of 49. Sanchez-Sanchez R, Rodriguez-Rego JM, Macias-Garcia
embryonic stem cells. Biofabrication. 2016;8(3):035020. A, Mendoza-Cerezo L, Diaz-Parralejo A. Relationship
doi: 10.1088/1758-5090/8/3/035020 between shear-thinning rheological properties of
39. Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly bioinks and bioprinting parameters. Int J Bioprint. 2023;
of apatite hybrid materials: from a single molecular 9(2):687.
template to bi-/multi-molecular templates. Biotechnol Adv. doi: 10.18063/ijb.687
2014;32(4):744-60. 50. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’
doi: 10.1016/j.biotechadv.2013.10.014 of candidate biomaterials for extrusion based 3D printing:
40. Luo Y, Chen S, Shi Y, Ma J. 3D printing of strontium-doped state-of-the-art. Adv Healthc Mater. 2017;6(16):1700264.
hydroxyapatite based composite scaffolds for repairing doi: 10.1002/adhm.201700264
critical-sized rabbit calvarial defects. Biomed Mater. 51. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.
2018;13(6):065004. Printability and shape fidelity of bioinks in 3D bioprinting.
doi: 10.1088/1748-605X/aad923 Chem Rev. 2020;120(19):11028-11055.
41. Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome- doi: 10.1021/acs.chemrev.0c00084
functionalized magnesium-organic framework-based 52. Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting
scaffolds with osteogenic, angiogenic and anti-inflammatory of gelatin methacryloyl-based constructs with highly
properties for accelerated bone regeneration. Bioact Mater. tunable structural fidelity. ACS Appl Mater Interfaces.
2022;18:26-41. 2020;12(40):44563-44577.
doi: 10.1016/j.bioactmat.2022.02.012 doi: 10.1021/acsami.0c15078
42. Antoniac IV, Antoniac A, Vasile E, et al. In vitro 53. Mora-Boza A, Wlodarczyk-Biegun MK, Del Campo A,
characterization of novel nanostructured collagen- Vazquez-Lasa B, Roman JS. Glycerylphytate as an ionic
hydroxyapatite composite scaffolds doped with magnesium crosslinker for 3D printing of multi-layered scaffolds with
with improved biodegradation rate for hard tissue improved shape fidelity and biological features. Biomater
regeneration. Bioact Mater. 2021;6(10):3383-3395. Sci. 2019;8(1):506-516.
doi: 10.1016/j.bioactmat.2021.02.030 doi: 10.1039/c9bm01271k
43. Chen SS, Li JZ, Zheng LW, Huang J, Wang M. Biomimicking 54. Latif M, Jiang Y, Kumar B, Song JM, Cho HC, Kim J.
trilayer scaffolds with controlled estradiol release for uterine High content nanocellulose 3D‐printed and esterified
tissue regeneration. Exploration. 2024:20230141. structures with strong interfacial adhesion, high mechanical
Volume 10 Issue 5 (2024) 254 doi: 10.36922/ijb.3526

