Page 263 - IJB-10-5
P. 263
International Journal of Bioprinting 3D printed hydrogels for tumor therapy
properties, and shape fidelity. Adv Mater Interfaces. bactericidal and controlled release of doxorubicin. Int J Biol
2022;9(16):202200280. Macromol. 2022;220:1277-1286.
doi: 10.1002/admi.202200280 doi: 10.1016/j.ijbiomac.2022.08.142
55. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone 65. Chu X, Zhang L, Li Y, He Y, Zhang Y, Du C. NIR responsive
tissue engineering using 3D printing. Mater Today. doxorubicin-loaded hollow copper ferrite @ polydopamine
2013;16(12):496-504. for dynergistic chemodynamic/photothermal/chemo-
doi: 10.1016/j.mattod.2013.11.017 therapy. Small. 2023;19(7):e2205414.
doi: 10.1002/smll.202205414
56. Wang ZC, Huang CZ, Han X, et al. Fabrication of aerogel
scaffolds with adjustable macro/micro-pore structure 66. Gao P, Fan B, Yu X, et al. Biofunctional magnesium coated
through 3D printing and sacrificial template method for Ti6Al4V scaffold enhances osteogenesis and angiogenesis in
tissue engineering. Mater Design. 2022;217(1):110662. vitro and in vivo for orthopedic application. Bioact Mater.
doi: 10.1016/j.matdes.2022.110662 2020;5(3):680-693.
doi: 10.1016/j.bioactmat.2020.04.019
57. Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EKF.
Effect of sterilization treatment on mechanical properties, 67. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated
biodegradation, bioactivity and printability of GelMA multi-layer 3D-fabrication of PDA/RGD coated graphene
hydrogels. Biomed Mater. 2020;15(6):065017. loaded PCL nanoscaffold for peripheral nerve restoration.
doi: 10.1088/1748-605X/aba40c Nat Commun. 2018;9(1):323.
doi: 10.1038/s41467-017-02598-7
58. O’Connell CD, Zhang B, Onofrillo C, et al. Tailoring the
mechanical properties of gelatin methacryloyl hydrogels 68. Yang Z, Si J, Cui Z, et al. Biomimetic composite scaffolds based
through manipulation of the photocrosslinking conditions. on surface modification of polydopamine on electrospun
Soft Matter. 2018;14(11):2142-2151. poly(lactic acid)/cellulose nanofibrils. Carbohydr Polym.
doi: 10.1039/c7sm02187a 2017;174:750-759.
doi: 10.1016/j.carbpol.2017.07.010
59. Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of
hydrogels: synthesis, properties, and their applications. 69. Cheng H, Chabok R, Guan X, et al. Synergistic interplay
Polymers (Basel). 2020;12(11):2702. between the two major bone minerals, hydroxyapatite and
doi: 10.3390/polym12112702 whitlockite nanoparticles, for osteogenic differentiation of
mesenchymal stem cells. Acta Biomater. 2018;69:342-351.
60. Piao Y, You H, Xu T, et al. Biomedical applications of gelatin doi: 10.1016/j.actbio.2018.01.016
methacryloyl hydrogels. Eng Regen. 2021;2:47-56.
doi: 10.1016/j.engreg.2021.03.002 70. Liu X, Wei Y, Xuan C, et al. A biomimetic biphasic osteochondral
scaffold with layer-specific release of stem cell differentiation
61. Zhang XA, Wei H, Dong C, et al. 3D printed hydrogel/ inducers for the reconstruction of osteochondral defects.
bioceramics core/shell scaffold with NIR-II triggered Adv Healthc Mater. 2020;9(23):e2000076.
drug release for chemo-photothermal therapy of bone doi: 10.1002/adhm.202000076
tumors and enhanced bone repair. Chem Eng J. 2023;
461:141855. 71. Li D, Zhang D, Yuan Q, et al. In vitro and in vivo assessment
doi: 10.1016/j.cej.2023.141855 of the effect of biodegradable magnesium alloys on
osteogenesis. Acta Biomater. 2022;141:454-465.
62. Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by doi: 10.1016/j.actbio.2021.12.032
polydopamine: working as “drug” carriers. Bioact Mater.
2020;5(3):522-541. 72. Wang L, Pang Y, Tang Y, et al. A biomimetic piezoelectric
doi: 10.1016/j.bioactmat.2020.04.003 scaffold with sustained Mg(2+) release promotes neurogenic
and angiogenic differentiation for enhanced bone
63. Cheng W, Nie JP, Gao NS, et al. A multifunctional regeneration. Bioact Mater. 2023;25:399-414.
nanoplatform against multidrug resistant cancer: merging doi: 10.1016/j.bioactmat.2022.11.004
the best of targeted chemo/gene/photothermal therapy. Adv
Funct Mater. 2017;27(45):1704135. 73. Sun M, Liu A, Shao H, et al. Systematical evaluation of
doi: 10.1002/adfm.201704135 mechanically strong 3D printed diluted magnesium doping
wollastonite scaffolds on osteogenic capacity in rabbit
64. Shahzadi I, Islam M, Saeed H, et al. Formation of calvarial defects. Sci Rep. 2016;6:34029.
biocompatible MgO/cellulose grafted hydrogel for efficient doi: 10.1038/srep34029
Volume 10 Issue 5 (2024) 255 doi: 10.36922/ijb.3526

