Page 263 - IJB-10-5
P. 263

International Journal of Bioprinting                                  3D printed hydrogels for tumor therapy




               properties,  and  shape  fidelity.  Adv Mater Interfaces.   bactericidal and controlled release of doxorubicin. Int J Biol
               2022;9(16):202200280.                              Macromol. 2022;220:1277-1286.
               doi: 10.1002/admi.202200280                        doi: 10.1016/j.ijbiomac.2022.08.142
            55.  Bose S, Vahabzadeh S, Bandyopadhyay A. Bone   65.  Chu X, Zhang L, Li Y, He Y, Zhang Y, Du C. NIR responsive
               tissue engineering using 3D printing.  Mater  Today.   doxorubicin-loaded hollow copper ferrite @ polydopamine
               2013;16(12):496-504.                               for dynergistic chemodynamic/photothermal/chemo-
               doi: 10.1016/j.mattod.2013.11.017                  therapy. Small. 2023;19(7):e2205414.
                                                                  doi: 10.1002/smll.202205414
            56.  Wang ZC, Huang CZ, Han X, et al. Fabrication of aerogel
               scaffolds with adjustable macro/micro-pore structure   66.  Gao P, Fan B, Yu X, et al. Biofunctional magnesium coated
               through 3D printing and sacrificial template method for   Ti6Al4V scaffold enhances osteogenesis and angiogenesis in
               tissue engineering. Mater Design. 2022;217(1):110662.  vitro and in vivo for orthopedic application. Bioact Mater.
               doi: 10.1016/j.matdes.2022.110662                  2020;5(3):680-693.
                                                                  doi: 10.1016/j.bioactmat.2020.04.019
            57.  Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EKF.
               Effect of sterilization treatment on mechanical properties,   67.  Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W. An integrated
               biodegradation, bioactivity and printability of GelMA   multi-layer 3D-fabrication of PDA/RGD coated graphene
               hydrogels. Biomed Mater. 2020;15(6):065017.        loaded PCL nanoscaffold for peripheral nerve restoration.
               doi: 10.1088/1748-605X/aba40c                      Nat Commun. 2018;9(1):323.
                                                                  doi: 10.1038/s41467-017-02598-7
            58.  O’Connell CD, Zhang B, Onofrillo C, et al. Tailoring the
               mechanical  properties  of  gelatin  methacryloyl  hydrogels   68.  Yang Z, Si J, Cui Z, et al. Biomimetic composite scaffolds based
               through manipulation of the photocrosslinking conditions.   on  surface  modification  of  polydopamine  on  electrospun
               Soft Matter. 2018;14(11):2142-2151.                poly(lactic  acid)/cellulose  nanofibrils.  Carbohydr Polym.
               doi: 10.1039/c7sm02187a                            2017;174:750-759.
                                                                  doi: 10.1016/j.carbpol.2017.07.010
            59.  Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of
               hydrogels: synthesis, properties, and their applications.   69.  Cheng H, Chabok R, Guan X, et al. Synergistic interplay
               Polymers (Basel). 2020;12(11):2702.                between the two major bone minerals, hydroxyapatite and
               doi: 10.3390/polym12112702                         whitlockite nanoparticles, for osteogenic differentiation of
                                                                  mesenchymal stem cells. Acta Biomater. 2018;69:342-351.
            60.  Piao Y, You H, Xu T, et al. Biomedical applications of gelatin      doi: 10.1016/j.actbio.2018.01.016
               methacryloyl hydrogels. Eng Regen. 2021;2:47-56.
               doi: 10.1016/j.engreg.2021.03.002               70.  Liu X, Wei Y, Xuan C, et al. A biomimetic biphasic osteochondral
                                                                  scaffold with layer-specific release of stem cell differentiation
            61.  Zhang XA, Wei H, Dong C, et al. 3D printed hydrogel/  inducers for the reconstruction of osteochondral defects.
               bioceramics core/shell scaffold with NIR-II triggered   Adv Healthc Mater. 2020;9(23):e2000076.
               drug release for chemo-photothermal therapy of bone      doi: 10.1002/adhm.202000076
               tumors and enhanced bone repair.  Chem Eng J. 2023;
               461:141855.                                     71.  Li D, Zhang D, Yuan Q, et al. In vitro and in vivo assessment
               doi: 10.1016/j.cej.2023.141855                     of  the  effect  of  biodegradable  magnesium  alloys  on
                                                                  osteogenesis. Acta Biomater. 2022;141:454-465.
            62.  Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by      doi: 10.1016/j.actbio.2021.12.032
               polydopamine: working as “drug” carriers.  Bioact Mater.
               2020;5(3):522-541.                              72.  Wang L, Pang Y, Tang Y, et al. A biomimetic piezoelectric
               doi: 10.1016/j.bioactmat.2020.04.003               scaffold with sustained Mg(2+) release promotes neurogenic
                                                                  and angiogenic differentiation for enhanced bone
            63.  Cheng  W, Nie  JP, Gao NS,  et al. A multifunctional   regeneration. Bioact Mater. 2023;25:399-414.
               nanoplatform against multidrug resistant cancer: merging      doi: 10.1016/j.bioactmat.2022.11.004
               the best of targeted chemo/gene/photothermal therapy. Adv
               Funct Mater. 2017;27(45):1704135.               73.  Sun M, Liu A, Shao H, et al. Systematical evaluation of
               doi: 10.1002/adfm.201704135                        mechanically strong 3D printed diluted magnesium doping
                                                                  wollastonite scaffolds on osteogenic capacity in rabbit
            64.  Shahzadi I, Islam M, Saeed H, et al. Formation of   calvarial defects. Sci Rep. 2016;6:34029.
               biocompatible MgO/cellulose grafted hydrogel for efficient      doi: 10.1038/srep34029











            Volume 10 Issue 5 (2024)                       255                                doi: 10.36922/ijb.3526
   258   259   260   261   262   263   264   265   266   267   268