Page 299 - IJB-10-5
P. 299
International Journal of Bioprinting 3D printing of collagen II-scaffolds
doi: 10.1088/1758-5090/ab15a9 controlled pore structures for cartilage tissue engineering.
Prog Nat Sci Mater Int. 2020;30(5):642-650.
32. Hu Y, Wu B, Xiong Y, et al. Cryogenic 3D printed hydrogel
scaffolds loading exosomes accelerate diabetic wound doi: 10.1016/j.pnsc.2020.07.003
healing. Chem Eng J. 2021;426:130634. 43. Cheng A, Schwartz Z, Kahn A, et al. Advances in porous
doi: 10.1016/j.cej.2021.130634 scaffold design for bone and cartilage tissue engineering and
regeneration. Tissue Eng Part B Rev. 2019;25(1):14-29.
33. Yang L, Jin S, Shi L, et al. Cryogenically 3D printed
biomimetic scaffolds containing decellularized small doi: 10.1089/ten.teb.2018.0119
intestinal submucosa and Sr2+/Fe3+ co-substituted 44. Zhang Q, Lu H, Kawazoe N, Chen G. Preparation of collagen
hydroxyapatite for bone tissue engineering. Chem Eng J. scaffolds with controlled pore structures and improved
2022;431:133459. mechanical property for cartilage tissue engineering. J
doi: 10.1016/j.cej.2021.133459 Bioactive Compat Polym. 2013;28(5):426-438.
doi: 10.1177/0883911513494620
34. Lu Z, Zandieh Doulabi B, Huang C, Bank R, Helder M.
Collagen type II enhances chondrogenesis in adipose tissue– 45. Harley BAC, Kim H-D, Zaman MH, Yannas IV,
derived stem cells by affecting cell shape. Tissue Eng Part A. Lauffenburger DA, Gibson LJ. Microarchitecture of three-
2010;16(1):81-90. dimensional scaffolds influences cell migration behavior via
doi: 10.1089/ten.TEA.2009.0222 junction interactions. Biophys J. 2008;95(8):4013-4024.
doi: 10.1529/biophysj.107.122598
35. Li R, Xu J, Wong DSH, Li J, Zhao P, Bian L. Self-assembled
N-cadherin mimetic peptide hydrogels promote the 46. Bai Y, Gong X, Dou C, Cao Z, Dong S. Redox control of
chondrogenesis of mesenchymal stem cells through chondrocyte differentiation and chondrogenesis. Free Radic
inhibition of canonical Wnt/β-catenin signaling. Biol Med. 2019;132:83-89.
Biomaterials. 2017;145:33-43. doi: 10.1016/j.freeradbiomed.2018.10.443
doi: 10.1016/j.biomaterials.2017.08.031
47. Di Luca A, Szlazak K, Lorenzo-Moldero I, et al. Influencing
36. Ke W, Ma L, Wang B, et al. N-cadherin mimetic hydrogel chondrogenic differentiation of human mesenchymal
enhances MSC chondrogenesis through cell metabolism. stromal cells in scaffolds displaying a structural gradient in
Acta Biomater. 2022;150:83-95. pore size. Acta Biomater. 2016;36:210-219.
doi: 10.1016/j.actbio.2022.07.050 doi: 10.1016/j.actbio.2016.03.014
37. Wang Y, Xiao Y, Long S, Fan Y, Zhang X. Role of N-Cadherin 48. Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted
in a niche-mimicking microenvironment for chondrogenesis gradient-structured scaffold generates anisotropic cartilage
of mesenchymal stem cells in vitro. ACS Biomater Sci Eng. with vascularization by pore-size-dependent activation of
2020;6(6):3491-3501. HIF1α/FAK signaling axis. Nanomedicine. 2021;37:102426.
doi: 10.1021/acsbiomaterials.0c00149 doi: 10.1016/j.nano.2021.102426
38. Eren Cimenci C, Kurtulus GU, Caliskan OS, Guler MO, 49. Luo C, Wang C, Wu X, et al. Influence of porous tantalum
Tekinay AB. N-cadherin mimetic peptide nanofiber system scaffold pore size on osteogenesis and osteointegration: a
induces chondrogenic differentiation of mesenchymal stem comprehensive study based on 3D-printing technology.
cells. Bioconjugate Chem. 2019;30(9):2417-2426. Mater Sci Eng C Mater Biol Appl. 2021;129:112382.
doi: 10.1021/acs.bioconjchem.9b00514 doi: 10.1016/j.msec.2021.112382
39. Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous 50. Mahzoon S, Detamore MS. Chondroinductive peptides:
extracellular matrix-modified chitosan hydrogels for drawing inspirations from cell–matrix interactions. Tissue
cartilage tissue engineering. ACS Appl Mater Interfaces. Eng Part B Rev. 2019;25(3):249-257.
2014;6(22):20110-20121. doi: 10.1089/ten.teb.2018.0003
doi: 10.1021/am505723k
51. Asgarpour K, Shojaei Z, Amiri F, et al. Exosomal microRNAs
40. Ren X, Wang F, Chen C, Gong X, Yin L, Yang L. Engineering derived from mesenchymal stem cells: cell-to-cell messages.
zonal cartilage through bioprinting collagen type II hydrogel Cell Commun Signal. 2020;18(1):149.
constructs with biomimetic chondrocyte density gradient. doi: 10.1186/s12964-020-00650-6
BMC Musculoskeletal Disord. 2016;17(1):301. 52. Kwon H, Paschos NK, Hu JC, Athanasiou K. Articular
doi: 10.1186/s12891-016-1130-8
cartilage tissue engineering: the role of signaling molecules.
41. Gibney R, Ferraris E. Bioprinting of collagen Type I and II via Cell Mol Life Sci. 2016;73(6):1173-1194.
aerosol jet printing for the replication of dense collagenous doi: 10.1007/s00018-015-2115-8
tissues. original research. Front Bioeng Biotechnol. 2021;9: 53. Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth
786945. factor and its polymer scaffold-based delivery system
doi: 10.3389/fbioe.2021.786945
for cartilage tissue engineering. Int J Nanomed. 2020;15:
42. Eviana Putri NR, Wang X, Chen Y, Li X, Kawazoe N, Chen 6097-6111.
G. Preparation of PLGA-collagen hybrid scaffolds with doi: 10.2147/IJN.S249829
Volume 10 Issue 5 (2024) 291 doi: 10.36922/ijb.3371

