Page 298 - IJB-10-5
P. 298

International Journal of Bioprinting                                     3D printing of collagen II-scaffolds




               matrix by mechanical and IGF-1 stimulation. Biomater Adv.      doi: 10.1016/j.bioactmat.2024.02.008
               2022;139:213019.                                21.  Tamaddon M, Burrows M, Ferreira S, et al. Monomeric,
               doi: 10.1016/j.bioadv.2022.213019
                                                                  porous type II collagen scaffolds promote chondrogenic
            11.  Peng Z, Sun H, Bunpetch V, et al. The regulation of   differentiation of human bone marrow mesenchymal stem
               cartilage  extracellular  matrix  homeostasis  in  joint   cells in vitro. Sci Rep. 2017;7:43519.
               cartilage degeneration and regeneration.  Biomaterials.      doi: 10.1038/srep43519
               2021;268:120555.
               doi: 10.1016/j.biomaterials.2020.120555         22.  Intini C, Lemoine M, Hodgkinson T, Casey S, Gleeson
                                                                  J, O’Brien F. A highly porous type II collagen containing
            12.  Sarrigiannidis SO, Rey JM, Dobre O, González-García C,   scaffold for the treatment of cartilage defects enhances MSC
               Dalby MJ, Salmeron-Sanchez M. A tough act to follow:   chondrogenesis and early cartilaginous matrix deposition.
               collagen hydrogel modifications to improve mechanical   Biomater Sci. 2022;10:970-983.
               and growth factor loading capabilities.  Mater Today Bio.      doi: 10.1039/D1BM01417J
               2021;10:100098.
               doi: 10.1016/j.mtbio.2021.100098                23.  Ko CS, Huang J-P, Huang C-W, Chu IM. Type II collagen-
                                                                  chondroitin  sulfate-hyaluronan  scaffold  cross-linked  by
            13.  Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu   genipin for cartilage tissue engineering.  J Biosci Bioeng.
               JC. Collagen Type I and II blend hydrogel with autologous   2009;107(2):177-182.
               mesenchymal stem cells as a scaffold for articular cartilage      doi: 10.1016/j.jbiosc.2008.09.020
               defect repair. ACS Biomater Sci Eng. 2020;6(6):3464-3476.
               doi: 10.1021/acsbiomaterials.9b01939            24.  Rustom LE, Poellmann MJ, Johnson AJW. Mineralization in
                                                                  micropores of calcium phosphate scaffolds. Acta Biomater.
            14.  Cámara-Torres M, Sinha R, Mota C, Moroni L. Improving   2019;83:435-455.
               cell distribution on 3D additive manufactured scaffolds      doi: 10.1016/j.actbio.2018.11.003
               through engineered seeding media density and viscosity.
               Acta Biomater. 2020;101(1):183-195.             25.  Suo H, Zhang J, Xu M, Wang L. Low-temperature 3D
               doi: 10.1016/j.actbio.2019.11.020                  printing of collagen and chitosan composite for  tissue
                                                                  engineering. Mater Sci Eng C. 2021;123:111963.
            15.  Pfeiffer E, Vickers SM, Frank E, Grodzinsky AJ, Spector M.      doi: 10.1016/j.msec.2021.111963
               The effects of glycosaminoglycan content on the compressive
               modulus of cartilage engineered in type II collagen scaffolds.   26.  Bhardwaj D, Singhmar R, Garg M, et al. Designing advanced
               Osteoarthritis Cartilage. 2008;16(10):1237-1244.   hydrogel inks with direct ink writing based 3D printability
               doi: 10.1016/j.joca.2008.02.014                    for engineered biostructures. Eur Polym J. 2024;205:112736.
                                                                  doi: 10.1016/j.eurpolymj.2023.112736
            16.  Yang K,  Sun J,  Dan W, et  al. Photo-crosslinked  mono-
               component type II collagen hydrogel as matrix to induce   27.  Gupta D, Singh AK, Dravid A, Bellare J. Multiscale porosity
               chondrogenic diffrentiation of bone marrow mesenchymal   in compressible cryogenically 3D printed gels for bone
               stem cells. J Mater Chem B. 2017;5:8707-8718.      tissue engineering. ACS Appl Mater Interfaces. 2019;11(22):
               doi: 10.1039/C7TB02348K                            20437-20452.
                                                                  doi: 10.1021/acsami.9b05460
            17.  Piperigkou Z, Bainantzou D, Makri N, et al. Enhancement
               of mesenchymal stem cells’ chondrogenic potential by type   28.  Gupta  D,  Vashisth  P,  Bellare  J.  Multiscale  porosity  in
               II collagen-based  bioscaffolds.  Mol Biol Rep. 2023;50(6):   a 3D printed gellan–gelatin composite for bone tissue
               5125-5135.                                         engineering. Biomed Mater. 2021;16(3):034103.
               doi: 10.1007/s11033-023-08461-x                    doi: 10.1088/1748-605x/abf1a7
            18.  Kato YP, Christiansen DL, Hahn RA, Shieh S-J, Goldstein   29.  Livak KJ, Schmittgen TD. Analysis of relative gene
               JD, Silver FH.  Mechanical properties of collagen fibres:   expression data using real-time quantitative PCR and the 2−
               a comparison of reconstituted and rat tail tendon fibres.   ΔΔCT method. Methods. 2001;25(4):402-408.
               Biomaterials. 1989;10(1):38-42.                    doi: 10.1006/meth.2001.1262
               doi: 10.1016/0142-9612(89)90007-0               30.  Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore
            19.  Sun Y-L, Luo Z-P, Fertala A, An K-N. Stretching type II   MS. Flow behavior prior to crosslinking: the need for
               collagen with optical tweezers.  J Biomech. 2004;37(11):   precursor rheology for placement of hydrogels in medical
               1665-1669.                                         applications  and  for  3D  bioprinting.  Prog  Polymer  Sci.
               doi: 10.1016/j.jbiomech.2004.02.028                2019;91:126-140.
                                                                  doi: 10.1016/j.progpolymsci.2019.01.003
            20.  Hu X, Jin M, Sun K, et al. Type II collagen scaffolds
               repair critical-sized osteochondral defects under induced   31.  Shi L, Hu Y, Ullah MW, et al. Cryogenic free-form extrusion
               conditions of osteoarthritis in rat knee joints via inhibiting   bioprinting of decellularized small intestinal submucosa
               TGF-β-Smad1/5/8 signaling pathway.  Bioactive Mater.   for potential applications in skin tissue engineering.
               2024;35:416-428.                                   Biofabrication. 2019;11(3):035023.


            Volume 10 Issue 5 (2024)                       290                                doi: 10.36922/ijb.3371
   293   294   295   296   297   298   299   300   301   302   303