Page 300 - IJB-10-5
P. 300
International Journal of Bioprinting 3D printing of collagen II-scaffolds
54. Lee C-R, Grodzinsky A, Spector M. Biosynthetic response 65. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment:
of passaged chondrocytes in a type II collagen scaffold hydrogel-based strategy for recapitulating dynamic ECM
to mechanical compression. J Biomed Mater Res A. mechanics. Adv Funct Mater. 2021;31(24):2100848.
2003;64(3):560-569. doi: 10.1002/adfm.202100848
doi: 10.1002/jbm.a.10443
66. Oh SH, Lee JH. Hydrophilization of synthetic biodegradable
55. Li Y, Liu Y, Li R, et al. Collagen-based biomaterials for bone polymer scaffolds for improved cell/tissue compatibility.
tissue engineering. Mater Design. 2021;210:110049. Biomed Mater. 2013;8(1):014101.
doi: 10.1016/j.matdes.2021.110049 doi: 10.1088/1748-6041/8/1/014101
56. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical 67. Wang W, Caetano G, Ambler WS, et al. Enhancing the
properties and cellular proliferation of electrospun collagen hydrophilicity and cell attachment of 3D printed PCL/
type II. Tissue Eng. 2004;10(9-10):1510-1517. Graphene scaffolds for bone tissue engineering. Materials
doi: 10.1089/ten.2004.10.1510 (Basel). 2016;9(12):992.
doi: 10.3390/ma9120992
57. Jang J-W, Min K-E, Kim C, Shin J, Lee J, Yi S. Review: scaffold
characteristics, fabrication methods, and biomaterials for 68. Chollet C, Lazare S, Guillemot F, Durrieu MC. Impact
the bone tissue engineering. Int J Precision Eng Manuf. of RGD micro-patterns on cell adhesion. Colloids Surf B
2023;24(3):511-529. Biointerfaces. 2010;75(1):107-114.
doi: 10.1007/s12541-022-00755-7 doi: 10.1016/j.colsurfb.2009.08.024
58. Koo E, Choi E-J, Lee J, Kim H, Kim G, Do S-H. 3D printed 69. Wu S-C, Chang W-H, Dong G-C, Chen K-Y, Chen Y-S,
cell-laden collagen and hybrid scaffolds for in vivo articular Yao C-H. Cell adhesion and proliferation enhancement by
cartilage tissue regeneration. J Ind Eng Chem. 2018;66: gelatin nanofiber scaffolds. J Bioactive Compatible Polyms.
343-355. 2011;26(6):565-577.
doi: 10.1016/j.jiec.2018.05.049 doi: 10.1177/0883911511423563
59. Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin 70. Steward AJ, Liu Y, Wagner DR. Engineering cell attachments
scaffolds for cartilage tissue engineering. Bioact Mater. to scaffolds in cartilage tissue engineering. JOM.
2023;26:77-87. 2011;63(4):74-82.
doi: 10.1016/j.bioactmat.2023.02.007 doi: 10.1007/s11837-011-0062-x
60. Nocera AD, Comín R, Salvatierra NA, Cid MP. Development 71. Padhi A, Nain AS. ECM in Differentiation: a review of
of 3D printed fibrillar collagen scaffold for tissue engineering. matrix structure, composition and mechanical properties.
Biomed Microdevices. 2018;20(2):26. Ann Biomed Eng. 2020;48(3):1071-1089.
doi: 10.1007/s10544-018-0270-z doi: 10.1007/s10439-019-02337-7
61. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis 72. Ross JJ, Tranquillo RT. ECM gene expression correlates
RL. Collagen-based bioinks for hard tissue engineering with in vitro tissue growth and development in fibrin gel
applications: a comprehensive review. J Mater Sci Mater remodeled by neonatal smooth muscle cells. Matrix Biol.
Med. 2019;30(3):32. 2003;22(6):477-490.
doi: 10.1007/s10856-019-6234-x doi: 10.1016/S0945-053X(03)00078-7
62. Diao J, OuYang J, Deng T, et al. 3D-plotted beta-tricalcium 73. Kjaer M. Role of extracellular matrix in adaptation of tendon
phosphate scaffolds with smaller pore sizes improve in and skeletal muscle to mechanical loading. Physiol Rev.
vivo bone regeneration and biomechanical properties in a 2004;84(2):649-698.
critical-sized calvarial defect rat model. Adv Healthc Mater. doi: 10.1152/physrev.00031.2003
2018;7(17):e1800441. 74. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW,
doi: 10.1002/adhm.201800441
Luyten FP, Picart C. Bone regeneration strategies: engineered
63. Cacopardo L, Guazzelli N, Nossa R, Mattei G, Ahluwalia A. scaffolds, bioactive molecules and stem cells current stage
Engineering hydrogel viscoelasticity. J Mech Behav Biomed and future perspectives. Biomaterials. 2018;180:143-162.
Mater. 2019;89:162-167. doi: 10.1016/j.biomaterials.2018.07.017
doi: 10.1016/j.jmbbm.2018.09.031
75. Andreaus U, Giorgio I, Madeo A. Modeling of the
64. Vining KH, Stafford A, Mooney DJ. Sequential modes interaction between bone tissue and resorbable biomaterial
of crosslinking tune viscoelasticity of cell-instructive as linear elastic materials with voids. Z Angew Math Phys.
hydrogels. Biomaterials. 2019;188:187-197. 2015;66(1):209-237.
doi: 10.1016/j.biomaterials.2018.10.013 doi: 10.1007/s00033-014-0403-z
Volume 10 Issue 5 (2024) 292 doi: 10.36922/ijb.3371

