Page 300 - IJB-10-5
P. 300

International Journal of Bioprinting                                     3D printing of collagen II-scaffolds




            54.  Lee C-R, Grodzinsky A, Spector M. Biosynthetic response   65.  Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment:
               of passaged chondrocytes in a type II collagen scaffold   hydrogel-based strategy for recapitulating dynamic ECM
               to mechanical compression.  J Biomed Mater Res A.   mechanics. Adv Funct Mater. 2021;31(24):2100848.
               2003;64(3):560-569.                                doi: 10.1002/adfm.202100848
               doi: 10.1002/jbm.a.10443
                                                               66.  Oh SH, Lee JH. Hydrophilization of synthetic biodegradable
            55.  Li Y, Liu Y, Li R, et al. Collagen-based biomaterials for bone   polymer  scaffolds  for  improved  cell/tissue  compatibility.
               tissue engineering. Mater Design. 2021;210:110049.  Biomed Mater. 2013;8(1):014101.
               doi: 10.1016/j.matdes.2021.110049                  doi: 10.1088/1748-6041/8/1/014101
            56.  Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical   67.  Wang W, Caetano G, Ambler WS, et al. Enhancing the
               properties and cellular proliferation of electrospun collagen   hydrophilicity and cell attachment of 3D printed PCL/
               type II. Tissue Eng. 2004;10(9-10):1510-1517.      Graphene scaffolds for bone tissue engineering.  Materials
               doi: 10.1089/ten.2004.10.1510                      (Basel). 2016;9(12):992.
                                                                  doi: 10.3390/ma9120992
            57.  Jang J-W, Min K-E, Kim C, Shin J, Lee J, Yi S. Review: scaffold
               characteristics,  fabrication  methods,  and  biomaterials  for   68.  Chollet C, Lazare S, Guillemot F, Durrieu MC. Impact
               the  bone  tissue  engineering.  Int J Precision Eng Manuf.   of RGD micro-patterns on cell adhesion.  Colloids Surf B
               2023;24(3):511-529.                                Biointerfaces. 2010;75(1):107-114.
               doi: 10.1007/s12541-022-00755-7                    doi: 10.1016/j.colsurfb.2009.08.024
            58.  Koo E, Choi E-J, Lee J, Kim H, Kim G, Do S-H. 3D printed   69.  Wu S-C, Chang W-H, Dong G-C, Chen K-Y, Chen Y-S,
               cell-laden collagen and hybrid scaffolds for in vivo articular   Yao C-H. Cell adhesion and proliferation enhancement by
               cartilage tissue regeneration.  J Ind Eng Chem. 2018;66:   gelatin nanofiber scaffolds. J Bioactive Compatible Polyms.
               343-355.                                           2011;26(6):565-577.
               doi: 10.1016/j.jiec.2018.05.049                    doi: 10.1177/0883911511423563
            59.  Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin   70.  Steward AJ, Liu Y, Wagner DR. Engineering cell attachments
               scaffolds for cartilage tissue engineering.  Bioact Mater.   to scaffolds in cartilage tissue engineering.  JOM.
               2023;26:77-87.                                     2011;63(4):74-82.
               doi: 10.1016/j.bioactmat.2023.02.007               doi: 10.1007/s11837-011-0062-x
            60.  Nocera AD, Comín R, Salvatierra NA, Cid MP. Development   71.  Padhi A, Nain AS. ECM in Differentiation: a review of
               of 3D printed fibrillar collagen scaffold for tissue engineering.   matrix structure, composition and mechanical properties.
               Biomed Microdevices. 2018;20(2):26.                Ann Biomed Eng. 2020;48(3):1071-1089.
               doi: 10.1007/s10544-018-0270-z                     doi: 10.1007/s10439-019-02337-7
            61.  Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis   72.  Ross JJ, Tranquillo RT. ECM gene expression correlates
               RL. Collagen-based bioinks for hard tissue engineering   with in vitro tissue growth and development in fibrin gel
               applications:  a comprehensive  review.  J Mater Sci Mater   remodeled by neonatal smooth muscle cells.  Matrix Biol.
               Med. 2019;30(3):32.                                2003;22(6):477-490.
               doi: 10.1007/s10856-019-6234-x                     doi: 10.1016/S0945-053X(03)00078-7
            62.  Diao J, OuYang J, Deng T, et al. 3D-plotted beta-tricalcium   73.  Kjaer M. Role of extracellular matrix in adaptation of tendon
               phosphate scaffolds with smaller pore sizes  improve in   and skeletal muscle to mechanical loading.  Physiol Rev.
               vivo bone regeneration and biomechanical properties in a   2004;84(2):649-698.
               critical-sized calvarial defect rat model. Adv Healthc Mater.      doi: 10.1152/physrev.00031.2003
               2018;7(17):e1800441.                            74.  Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW,
               doi: 10.1002/adhm.201800441
                                                                  Luyten FP, Picart C. Bone regeneration strategies: engineered
            63.  Cacopardo L, Guazzelli N, Nossa R, Mattei G, Ahluwalia A.   scaffolds, bioactive molecules and stem cells current stage
               Engineering hydrogel viscoelasticity. J Mech Behav Biomed   and future perspectives. Biomaterials. 2018;180:143-162.
               Mater. 2019;89:162-167.                            doi: 10.1016/j.biomaterials.2018.07.017
               doi: 10.1016/j.jmbbm.2018.09.031
                                                               75.  Andreaus  U,  Giorgio  I,  Madeo  A.  Modeling  of  the
            64.  Vining KH, Stafford A, Mooney DJ. Sequential modes   interaction between bone tissue and resorbable biomaterial
               of crosslinking tune viscoelasticity of cell-instructive   as linear elastic materials with voids. Z Angew Math Phys.
               hydrogels. Biomaterials. 2019;188:187-197.         2015;66(1):209-237.
               doi: 10.1016/j.biomaterials.2018.10.013            doi: 10.1007/s00033-014-0403-z







            Volume 10 Issue 5 (2024)                       292                                doi: 10.36922/ijb.3371
   295   296   297   298   299   300   301   302   303   304   305