Page 389 - IJB-10-5
P. 389
International Journal of Bioprinting Tunable anisotropic gyroid bioscaffolds
9. Yao Y, Qin W, Xing B, Sha N, Jiao T, Zhao Z. High apparent activation energy for densification of α-alumina
performance hydroxyapatite ceramics and a triply periodic and zinc oxide. J Eur Ceram Soc. 2014;34(12):3103-3110.
minimum surface structure fabricated by digital light doi: 10.1016/j.jeurceramsoc.2014.04.006
processing 3D printing. J Adv Ceram. 2021;10(1):39-48. 21. Tang J, Xu J, Ye Z, Li X, Luo J. Microwave sintered porous
doi: 10.1007/s40145-020-0415-4
CoCrFeNiMo high entropy alloy as an efficient electrocatalyst
10. Li G, Li Z, Min Y, Chen S, Han R, Zhao Z. 3D‐printed for alkaline oxygen evolution reaction. J Mater Sci Technol.
piezoelectric scaffolds with shape memory polymer for bone 2021;79:171-177.
regeneration. Small. 2023;19(40):e2302927. doi: 10.1016/j.jmst.2020.10.079
doi: 10.1002/smll.202302927
22. Yeung K-W, Tang C-Y, Hu R, et al. Fabrication of ceramic
11. Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric bioscaffolds from fly ash cenosphere by susceptor-assisted
smart scaffolds for next-generation bone tissue engineering. microwave sintering. J Eur Ceram Soc. 2022;42(2):
Int J Extrem Manuf. 2023;5(3):032007. 4410-4419.
doi: 10.1088/2631-7990/acd88f doi: 10.1016/j.jeurceramsoc.2022.03.046
12. Zhou Q, Su X, Wu J, et al. Additive manufacturing of 23. Garnault T, Bouvard D, Chaix J-M, Marinel S, Harnois C. Is
bioceramic implants for restoration bone engineering: direct microwave heating well suited for sintering ceramics?
technologies, advances, and future perspectives. ACS Ceram Int. 2021;47(12):16716-16729.
Biomater Sci Eng. 2023;9(3):1164-1189. doi: 10.1016/j.ceramint.2021.02.242
doi: 10.1021/acsbiomaterials.2c01164
24. Zhou M, Liu W, Wu H, et al. Preparation of a defect-free
13. Ravi M, Paramesh V, Kaviya S, Anuradha E, Solomon FP. alumina cutting tool via additive manufacturing based
3D cell culture systems: advantages and applications. J Cell on stereolithography–Optimization of the drying and
Physiol. 2015;230(1):16-26. debinding processes. Ceram Int. 2016;42(10):11598-11602.
doi: 10.1002/jcp.24683 doi: 10.1016/j.ceramint.2016.04.050
14. Ma J, Qin C, Wu J, et al. 3D printing of strontium silicate 25. Cui H, Hensleigh R, Yao D, et al. Three-dimensional
microcylinder‐containing multicellular biomaterial inks printing of piezoelectric materials with designed anisotropy
for vascularized skin regeneration. Adv Healthc Mater. and directional response. Nature Mater. 2019;18(3):234-241.
2021;10(16):e2100523. doi: 10.1038/s41563-018-0268-1
doi: 10.1002/adhm.202100523
26. Zhianmanesh M, Varmazyar M, Montazerian H. Fluid
15. Feng C, Zhang K, He R, et al. Additive manufacturing of permeability of graded porosity scaffolds architectured
hydroxyapatite bioceramic scaffolds: dispersion, digital with minimal surfaces. ACS Biomater Sci Eng. 2019;5(3):
light processing, sintering, mechanical properties, and 1228-1237.
biocompatibility. J Adv Ceram. 2020;9:360-373. doi: 10.1021/acsbiomaterials.8b01400
doi: 10.1007/s40145-020-0375-8
27. Song K, Wang Z, Lan J, Ma S. Porous structure design
16. Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. and mechanical behavior analysis based on TPMS for
J Eur Ceram Soc. 2019;39(4):661-687. customized root analogue implant. J Mech Behav Biomed
doi: 10.1016/j.jeurceramsoc.2018.11.013 Mater. 2021;115:104222.
17. Ren X, Wang J, Wu Y, et al. One-pot synthesis of doi: 10.1016/j.jmbbm.2020.104222
hydroxyapatite hybrid bioinks for digital light processing 28. Yeung K-W, Huang Z, Mang C-Y, et al. Fabrication
3D printing in bone regeneration. J Mater Sci Technol. of predesigned 3D carbon based microstructures via
2024;188:84-97. two-photon vat photopolymerization and susceptor-
doi: 10.1016/j.jmst.2024.01.001 assisted microwave post-processing. Addit Manuf.
18. Li Y, Su J, Chen A, et al. Strontium-doped calcium silicate 2023;79(16):103934.
scaffolds with enhanced mechanical properties and tunable doi: 10.1016/j.addma.2023.103934
biodegradability fabricated by vat photopolymerization. Int 29. Arita R, Iijima M, Fujishiro Y, et al. Rapid three-dimensional
J Bioprint. 2023;9(6):1233. structuring of transparent SiO2 glass using interparticle
doi: 10.36922/ijb.1233 photo-cross-linkable suspensions. Commun Mater.
19. Akinwekomi AD, Yeung K-W, Tang C-Y, Law W-C, Tsui 2020;1(1):30.
GC-P. Finite element simulation of hybrid microwave doi: 10.1038/s43246-020-0029-y
sintering based on power approach. Int J Adv Manuf Technol. 30. Zhao D, Su H, Hu K, et al. Formation mechanism and
2020;110:2503-2515. controlling strategy of lamellar structure in 3D printed
doi: 10.1007/s00170-020-05952-0 alumina ceramics by digital light processing. Addit Manuf.
20. Zuo F, Badev A, Saunier S, Goeuriot D, Heuguet R, Marinel 2022;52:102650.
S. Microwave versus conventional sintering: estimate of the doi: 10.1016/j.addma.2022.102650
Volume 10 Issue 5 (2024) 381 doi: 10.36922/ijb.3609

