Page 389 - IJB-10-5
P. 389

International Journal of Bioprinting                                  Tunable anisotropic gyroid bioscaffolds




            9.   Yao Y, Qin W, Xing B, Sha N, Jiao T, Zhao Z. High   apparent activation energy for densification of α-alumina
               performance hydroxyapatite ceramics and a triply periodic   and zinc oxide. J Eur Ceram Soc. 2014;34(12):3103-3110.
               minimum surface structure fabricated by digital light      doi: 10.1016/j.jeurceramsoc.2014.04.006
               processing 3D printing. J Adv Ceram. 2021;10(1):39-48.  21.  Tang J, Xu J, Ye Z, Li X, Luo J. Microwave sintered porous
               doi: 10.1007/s40145-020-0415-4
                                                                  CoCrFeNiMo high entropy alloy as an efficient electrocatalyst
            10.  Li G,  Li Z, Min Y, Chen S, Han  R, Zhao Z. 3D‐printed   for alkaline oxygen evolution reaction. J Mater Sci Technol.
               piezoelectric scaffolds with shape memory polymer for bone   2021;79:171-177.
               regeneration. Small. 2023;19(40):e2302927.         doi: 10.1016/j.jmst.2020.10.079
               doi: 10.1002/smll.202302927
                                                               22.  Yeung K-W, Tang C-Y, Hu R, et al. Fabrication of ceramic
            11.  Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric   bioscaffolds from fly ash cenosphere by susceptor-assisted
               smart scaffolds for next-generation bone tissue engineering.   microwave sintering.  J Eur Ceram Soc. 2022;42(2):
               Int J Extrem Manuf. 2023;5(3):032007.              4410-4419.
               doi: 10.1088/2631-7990/acd88f                      doi: 10.1016/j.jeurceramsoc.2022.03.046
            12.  Zhou Q, Su X, Wu J, et al. Additive manufacturing of   23.  Garnault T, Bouvard D, Chaix J-M, Marinel S, Harnois C. Is
               bioceramic  implants for restoration bone engineering:   direct microwave heating well suited for sintering ceramics?
               technologies, advances, and future perspectives.  ACS   Ceram Int. 2021;47(12):16716-16729.
               Biomater Sci Eng. 2023;9(3):1164-1189.             doi: 10.1016/j.ceramint.2021.02.242
               doi: 10.1021/acsbiomaterials.2c01164
                                                               24.  Zhou M, Liu W, Wu H, et al. Preparation of a defect-free
            13.  Ravi M, Paramesh V, Kaviya S, Anuradha E, Solomon FP.   alumina cutting tool via additive manufacturing based
               3D cell culture systems: advantages and applications. J Cell   on stereolithography–Optimization of the drying and
               Physiol. 2015;230(1):16-26.                        debinding processes. Ceram Int. 2016;42(10):11598-11602.
               doi: 10.1002/jcp.24683                             doi: 10.1016/j.ceramint.2016.04.050
            14.  Ma J, Qin C, Wu J, et al. 3D printing of strontium silicate   25.  Cui H, Hensleigh R, Yao D, et al. Three-dimensional
               microcylinder‐containing  multicellular  biomaterial  inks   printing of piezoelectric materials with designed anisotropy
               for vascularized skin regeneration.  Adv Healthc Mater.   and directional response. Nature Mater. 2019;18(3):234-241.
               2021;10(16):e2100523.                              doi: 10.1038/s41563-018-0268-1
               doi: 10.1002/adhm.202100523
                                                               26.  Zhianmanesh M, Varmazyar M, Montazerian H. Fluid
            15.  Feng C, Zhang K, He R, et al. Additive manufacturing of   permeability of graded porosity scaffolds architectured
               hydroxyapatite bioceramic scaffolds: dispersion, digital   with minimal surfaces.  ACS Biomater Sci Eng. 2019;5(3):
               light processing, sintering, mechanical properties, and   1228-1237.
               biocompatibility. J Adv Ceram. 2020;9:360-373.     doi: 10.1021/acsbiomaterials.8b01400
               doi: 10.1007/s40145-020-0375-8
                                                               27.  Song K, Wang Z, Lan J, Ma S. Porous structure design
            16.  Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review.    and mechanical behavior analysis based on TPMS for
               J Eur Ceram Soc. 2019;39(4):661-687.               customized root analogue implant.  J Mech Behav Biomed
               doi: 10.1016/j.jeurceramsoc.2018.11.013            Mater. 2021;115:104222.
            17.  Ren  X,  Wang  J,  Wu  Y,  et  al. One-pot  synthesis  of      doi: 10.1016/j.jmbbm.2020.104222
               hydroxyapatite hybrid bioinks for  digital  light  processing   28.  Yeung  K-W,  Huang  Z,  Mang  C-Y,  et  al.  Fabrication
               3D printing in bone regeneration.  J Mater Sci Technol.   of  predesigned 3D  carbon based microstructures  via
               2024;188:84-97.                                    two-photon vat photopolymerization and susceptor-
               doi: 10.1016/j.jmst.2024.01.001                    assisted microwave post-processing.  Addit  Manuf.
            18.  Li Y, Su J, Chen A, et al. Strontium-doped calcium silicate   2023;79(16):103934.
               scaffolds with enhanced mechanical properties and tunable      doi: 10.1016/j.addma.2023.103934
               biodegradability fabricated by vat photopolymerization. Int   29.  Arita R, Iijima M, Fujishiro Y, et al. Rapid three-dimensional
               J Bioprint. 2023;9(6):1233.                        structuring of transparent SiO2 glass using interparticle
               doi: 10.36922/ijb.1233                             photo-cross-linkable  suspensions.  Commun  Mater.
            19.  Akinwekomi  AD,  Yeung  K-W,  Tang  C-Y,  Law  W-C,  Tsui   2020;1(1):30.
               GC-P. Finite element simulation of hybrid microwave      doi: 10.1038/s43246-020-0029-y
               sintering based on power approach. Int J Adv Manuf Technol.   30.  Zhao D, Su H, Hu K, et al. Formation mechanism and
               2020;110:2503-2515.                                controlling strategy of lamellar structure in 3D printed
               doi: 10.1007/s00170-020-05952-0                    alumina ceramics by digital light processing. Addit Manuf.
            20.  Zuo F, Badev A, Saunier S, Goeuriot D, Heuguet R, Marinel   2022;52:102650.
               S. Microwave versus conventional sintering: estimate of the      doi: 10.1016/j.addma.2022.102650


            Volume 10 Issue 5 (2024)                       381                                doi: 10.36922/ijb.3609
   384   385   386   387   388   389   390   391   392   393   394