Page 567 - IJB-10-5
P. 567

International Journal of Bioprinting                                    3D bioprinting of collagen hydrogels




               dysfunction  after  spinal  cord  injury  in  rats.  Regener.   in-situ bilayer bioprinting for wound healing. Mater. Today
               Biomater. 2022;9:rbac014.                          Bio. 2022;16:100334.
               doi: 10.1093/rb/rbac014                            doi: 10.1016/j.mtbio.2022.100334
            44.  Stepanovska J, Supova M, Hanzalek K, Broz A, Matejka R.   54.  Ding X, Yu Y, Li W, Zhao Y. In situ 3D-bioprinting MoS   2
               Collagen bioinks for bioprinting: a systematic review of   accelerated gelling hydrogel scaffold for promoting
               hydrogel properties, bioprinting parameters, protocols,   chronic  diabetic  wound  healing.  Matter.   2023;
               and bioprinted structure characteristics.  Biomedicines.   6:1000-1014.
               2021;9:1137.                                       doi: 10.1016/j.matt.2023.01.001
               doi: 10.3390/biomedicines9091137                55.  Santefort AL, Yuya PA, Shipp DA. Dynamic covalent
            45.  Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting   exchange induced cyclization in poly (methacrylic
               of Collagen: considerations, potentials, and applications.   anhydride). Polym. Chem. 2022;13:4502-4510.
               Macromol. Biosci. 2021;21:2000280.                 doi: 10.1039/D2PY00488G
               doi: 10.1002/mabi.202000280                     56.  Cavallo A, Kayal T, Mero A, et al. Marine Collagen-based
            46.  Matinong AME, Chisti Y, Pickering KL, Haverkamp   bioink for 3D bioprinting of a Bilayered skin model.
               RG. Collagen extraction from animal skin.  Biology.    Pharmaceutics. 2023;15:1331.
               2022;11:905.                                       doi: 10.3390/pharmaceutics15051331
               doi: 10.3390/biology11060905                    57.  Kang D, Wang W, Li Y, Ma Y, Huang Y, Wang J. Biological
            47.  Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah   macromolecule hydrogel based on recombinant Type I
               BHI, Chowdhury SR. Ovine tendon collagen: extraction,   Collagen/Chitosan scaffold to accelerate full-thickness
               characterisation and fabrication of thin films  for  tissue   healing of skin wounds. Polymers. 2023;15:3919.
               engineering applications. Mater. Sci. Eng. C. 2016;68:163-171.     doi: 10.3390/polym15193919
               doi: 10.1016/j.msec.2016.05.109                 58.  Osidak EO., Karalkin PA., Osidak MS, et al. Viscoll collagen
            48.  Diamantides N, Wang L, Pruiksma T,  et al. Correlating   solution as a novel bioink for direct 3D bioprinting. J. Mater.
               rheological properties and printability of collagen bioinks:   Sci.: Mater. Med. 2019;30:31.
               the effects of riboflavin photocrosslinking and Ph.      doi: 10.1007/s10856-019-6233-y
               Biofabrication. 2017;9:034102.                  59.  Yannas I, Tzeranis D, So PT. Surface biology of collagen
               doi: 10.1088/1758-5090/aa780f                      scaffold explains blocking of wound contraction and
            49.  Mondy WL, Cameron D, Timmermans J, et al. Computer-  regeneration of skin and peripheral nerves. Biomed. Mater.
               aided design of microvasculature systems for use in vascular   2016;11:014106.
               scaffold production. Biofabrication. 2009;1:035002.     doi: 10.1088/1748-6041/11/1/0A14106
               doi: 10.1088/1758-5082/1/3/035002               60.  Ma L, Gao C, Mao Z, Zhou J, Shen J. Biodegradability and
                                                                  cell-mediated contraction of porous collagen scaffolds: the
            50.  Logan ME, Zaim MT. Histologic stains in dermatopathology.
               J. Am. Acad. Dermatol. 1990;22:820-830.            effect of lysine as a novel crosslinking bridge.  J. Biomed.
               doi: 10.1016/S0190-9622(08)81173-5                 Mater. Res., Part A. 2004;71A:334–342.
                                                                  doi: 10.1002/jbm.a.30170
            51.  Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability
               in extrusion bioprinting. Biofabrication. 2021;13:033001.  61.  Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting
               doi: 10.1088/1758-5090/abe7ab                      of autologous skin cells accelerates wound healing of
                                                                  extensive  excisional  full-thickness wounds.  Sci. Rep.
            52.  Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate   2019;9:1856.
               induces  fibroblast  chemotaxis  and  myofibroblast     doi: 10.1038/s41598-018-38366-w
               differentiation.   J.  Thromb.  Haemostasis.  2020;18:   62.  Wei Q, Wang Y, Wang H,  et  al. Photo-induced adhesive
               3043-3052.                                         carboxymethyl chitosan-based hydrogels with antibacterial
               doi: 10.1111/jth.15066
                                                                  and antioxidant properties for accelerating wound healing.
            53.  Zhao M, Wang J, Zhang J, et al. Functionalizing multi-  Carbohydr. Polym. 2021;278:119000.
               component bioink with platelet-rich plasma for customized      doi: 10.1016/j.carbpol.2021.119000













            Volume 10 Issue 5 (2024)                       559                                doi: 10.36922/ijb.4069
   562   563   564   565   566   567   568   569   570   571   572