Page 580 - IJB-10-5
P. 580

International Journal of Bioprinting                              ML-generated GelMA compression database




            Conflict of interest                               4.   Daikuara LY, Yue Z, Skropeta D, Wallace GG.  In  vitro
                                                                  characterisation of 3D printed platelet lysate-based bioink
            The authors declare that they have no known competing   for potential application in skin tissue engineering.  Acta
            financial interests or personal relationships that could   Biomater. 2021;123:286-297.
            have appeared to influence the work reported in       doi: 10.1016/j.actbio.2021.01.021
            this article.                                      5.   Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a
                                                                  comprehensive review on bioprintable materials. Biotechnol
            Author Contributions                                  Adv. 2017;35(2):217-239.

            Conceptualization:  Johnson Chung, Kalani Ruberu,      doi: 10.1016/j.biotechadv.2016.12.006
               Manisha Senadeera                               6.   Floren M, Bonani W, Dharmarajan A, Motta A, Migliaresi
            Data curation: Shiue-Luen Chen, Manisha Senadeera     C,  Tan  W. Human  mesenchymal  stem  cells  cultured  on
            Funding acquisition: Svetha Venkatesh, Guan-Yu Chen,   silk hydrogels with variable stiffness and growth factor
               Gordon Wallace                                     differentiate into mature smooth muscle cell phenotype.
            Methodology:  Shiue-Luen Chen, Johnson Chung,         Acta Biomater. 2016;31:156-166.
                                                                  doi: 10.1016/j.actbio.2015.11.051
               Kalani Ruberu, Manisha Senadeera, Santu Rana
            Resources:  Svetha  Venkatesh,  Guan-Yu  Chen,     7.   Macri-Pellizzeri L, De-Juan-Pardo EM, Prosper F, Pelacho
               Gordon Wallace                                     B. Role of substrate biomechanics in controlling (stem) cell
            Supervision:   Svetha  Venkatesh,  Guan-Yu  Chen,     fate:  implications  in  regenerative  medicine.  J Tissue Eng
                                                                  Regene Med. 2018;12(4):1012-1019.
               Gordon Wallace                                     doi: 10.1002/term.2586
            Writing – original draft:  Shiue-Luen Chen, Manisha
               Senadeera, Johnson Chung, Kalani Ruberu         8. Yi B, Xu Q, Liu W. An overview of substrate stiffness guided
            Writing – review & editing:  Chong-You Chen, Johnson   cellular response and its applications in tissue regeneration.
               Chung, Guan-Yu Chen, Gordon Wallace                Bioact Mater. 2022;15:82-102.
                                                                  doi: 10.1016/j.bioactmat.2021.12.005
            Ethics approval and consent to participate         9.   Lv H, Wang H, Zhang Z, et al. Biomaterial stiffness
                                                                  determines stem cell fate. Life Sci. 2017;178:42-48.
            Not applicable.                                       doi: 10.1016/j.lfs.2017.04.014

            Consent for publication                            10.  Querceto S, Santoro R, Gowran A, et al. The harder the
                                                                  climb the better the view: the impact of substrate stiffness
            Not applicable.                                       on cardiomyocyte fate. J Mol Cell Cardiol. 2022;166:36-49.
                                                                  doi: 10.1016/j.yjmcc.2022.02.001
            Availability of data                               11.  Huang Y, Xu K, Liu J, Dai G, Yin J, Wei P. Promotion of
                                                                  adrenal pheochromocytoma (PC-12) cell proliferation and
            Data  are  available  from  the  corresponding  author  upon   outgrowth using Schwann cell-laden gelatin methacrylate
            reasonable request.                                   substrate. Gels. 2022;8(2):84.
                                                                  doi: 10.3390/gels8020084
            References
                                                               12.  Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
            1.   Hashizume R, Fujimoto KL, Hong Y, et al. Morphological   Khademhosseini A. Cell-laden microengineered gelatin
               and mechanical characteristics of the reconstructed   methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544.
               rat  abdominal  wall  following  use  of  a  wet  electrospun      doi: 10.1016/j.biomaterials.2010.03.064
               biodegradable polyurethane elastomer scaffold. Biomaterials.   13.  Fan Y, Yue Z, Lucarelli E, Wallace GG. Hybrid printing using
               2010;31(12):3253-3265.                             cellulose nanocrystals reinforced GelMA/HAMA hydrogels
               doi: 10.1016/j.biomaterials.2010.01.051            for improved structural integration.  Adv Healthc Mater.
            2.   Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney   2020;9(24):2001410.
               DJ.  Dual  growth  factor  delivery  and  controlled  scaffold      doi: 10.1002/adhm.202001410
               degradation enhance  in vivo bone formation by   14.  Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic
               transplanted bone marrow stromal cells. Bone. 2004;35(2):   optimization of visible light-induced crosslinking conditions
               562-569.                                           of gelatin methacryloyl (GelMA). Sci Rep. 2021;11(1):23276.
               doi: 10.1016/j.bone.2004.02.027                    doi: 10.1038/s41598-021-02830-x
            3.   Chung JHY, Kade JC, Jeiranikhameneh A, et al. 3D hybrid   15.  Wu Y, Xiang Y, Fang J, et al. The influence of the stiffness of
               printing  platform  for  auricular  cartilage  reconstruction.   GelMA substrate on the outgrowth of PC12 cells. Biosci Rep.
               Biomed Phys Eng Express. 2020;6(3):035003.         2019;39(1): BSR20181748.
               doi: 10.1088/2057-1976/ab54a7                      doi: 10.1042/BSR20181748

            Volume 10 Issue 5 (2024)                       572                                doi: 10.36922/ijb.3814
   575   576   577   578   579   580   581   582   583   584