Page 581 - IJB-10-5
P. 581

International Journal of Bioprinting                             ML-generated GelMA compression database




            16.  Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-  24.  Yu C, Jiang J. A perspective on using machine learning in 3D
               concentration cell-laden gelatin methacrylate (GelMA)   bioprinting. Int J Bioprint. 2020;6(1):253.
               bioinks with a two-step cross-linking strategy.  ACS Appl      doi: 10.18063/ijb.v6i1.253
               Mater Interfaces. 2018;10(8):6849-6857.         25.  An J, Chua CK, Mironov V. Application of machine learning
               doi: 10.1021/acsami.7b16059
                                                                  in 3D bioprinting: focus on development of big data and
            17.  Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and   digital twin. Int J Bioprint. 2021;7(1):342.
               printability for extrusion printing living cells. Biomater Sci.      doi: 10.18063/ijb.v7i1.342
               2013;1(7):763-773.                              26.  Tian  S,  Stevens  R,  McInnes  BT,  Lewinski  NA.  Machine
               doi: 10.1039/c3bm00012e
                                                                  assisted experimentation of extrusion-based bioprinting
            18.  Her GJ, Wu H-C, Chen M-H, Chen M-Y, Chang S-C, Wang   systems. Micromachines. 2021;12(7):780.
               T-W.  Control  of  three-dimensional  substrate  stiffness  to      doi: 10.3390/mi12070780
               manipulate mesenchymal stem cell fate toward neuronal or   27.  Brochu E, Cora VM, Freitas ND. A tutorial on Bayesian
               glial lineages. Acta Biomater. 2013;9(2):5170-5180.  optimization of expensive cost functions, with application
               doi: 10.1016/j.actbio.2012.10.012
                                                                  to  active  user  modeling  and  hierarchical  reinforcement
            19.  O’Connell CD, Zhang B, Onofrillo C, et al. Tailoring the   learning. ArXiv. 2010;1012:2599
               mechanical  properties  of  gelatin  methacryloyl  hydrogels      doi: 10.48550/arXiv.1012.2599
               through manipulation of the photocrosslinking conditions.   28.  Bishop CM, Nasrabadi NM. Pattern recognition and
               Soft Matter. 2018;14(11):2142-2151.                machine  learning.  J Electronic Imaging.  2007;16(4):
               doi: 10.1039/c7sm02187a
                                                                  049901.
            20.  Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink      doi: 10.1117/1.2819119
               formulation and machine learning-empowered bioprinting   29.  Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix
               optimization. Front Bioeng Biotechnol. 2022;10:913579.  elasticity directs stem cell lineage specification.  Cell.
               doi: 10.3389/fbioe.2022.913579
                                                                  2006;126(4):677-689.
            21.  Ruberu K, Senadeera M, Rana S, et al. Coupling machine      doi: 10.1016/j.cell.2006.06.044
               learning with 3D bioprinting to fast track optimisation of   30.  Aregueta-Robles UA, Martens PJ, Poole-Warren LA,
               extrusion printing. Appl Mater Today. 2021;22:100914.  Green RA. Tissue engineered hydrogels supporting
               doi: 10.1016/j.apmt.2020.100914
                                                                  3D   neural  networks.  Acta  Biomater.  2019;95:
            22.  Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D   269-284.
               bioprinting technology based on machine learning: a review of      doi: 10.1016/j.actbio.2018.11.044
               recent trends and advances. Micromachines. 2022;13(3):363.  31.  Chatterjee K, Lin-Gibson S, Wallace WE, et al. The effect of
               doi: 10.3390/mi13030363
                                                                  3D hydrogel scaffold modulus on osteoblast differentiation
            23.  Sun J, Yao  K, An J, Jing  L, Huang K,  Huang D. Machine   and  mineralization  revealed  by  combinatorial  screening.
               learning and 3D bioprinting. Int J Bioprint. 2023;9(4):717.   Biomaterials. 2010;31(19):5051-5062.
               doi: 10.18063/ijb.717                              doi: 10.1016/j.biomaterials.2010.03.024






























            Volume 10 Issue 5 (2024)                       573                                doi: 10.36922/ijb.3814
   576   577   578   579   580   581   582   583   584