Page 581 - IJB-10-5
P. 581
International Journal of Bioprinting ML-generated GelMA compression database
16. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low- 24. Yu C, Jiang J. A perspective on using machine learning in 3D
concentration cell-laden gelatin methacrylate (GelMA) bioprinting. Int J Bioprint. 2020;6(1):253.
bioinks with a two-step cross-linking strategy. ACS Appl doi: 10.18063/ijb.v6i1.253
Mater Interfaces. 2018;10(8):6849-6857. 25. An J, Chua CK, Mironov V. Application of machine learning
doi: 10.1021/acsami.7b16059
in 3D bioprinting: focus on development of big data and
17. Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and digital twin. Int J Bioprint. 2021;7(1):342.
printability for extrusion printing living cells. Biomater Sci. doi: 10.18063/ijb.v7i1.342
2013;1(7):763-773. 26. Tian S, Stevens R, McInnes BT, Lewinski NA. Machine
doi: 10.1039/c3bm00012e
assisted experimentation of extrusion-based bioprinting
18. Her GJ, Wu H-C, Chen M-H, Chen M-Y, Chang S-C, Wang systems. Micromachines. 2021;12(7):780.
T-W. Control of three-dimensional substrate stiffness to doi: 10.3390/mi12070780
manipulate mesenchymal stem cell fate toward neuronal or 27. Brochu E, Cora VM, Freitas ND. A tutorial on Bayesian
glial lineages. Acta Biomater. 2013;9(2):5170-5180. optimization of expensive cost functions, with application
doi: 10.1016/j.actbio.2012.10.012
to active user modeling and hierarchical reinforcement
19. O’Connell CD, Zhang B, Onofrillo C, et al. Tailoring the learning. ArXiv. 2010;1012:2599
mechanical properties of gelatin methacryloyl hydrogels doi: 10.48550/arXiv.1012.2599
through manipulation of the photocrosslinking conditions. 28. Bishop CM, Nasrabadi NM. Pattern recognition and
Soft Matter. 2018;14(11):2142-2151. machine learning. J Electronic Imaging. 2007;16(4):
doi: 10.1039/c7sm02187a
049901.
20. Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink doi: 10.1117/1.2819119
formulation and machine learning-empowered bioprinting 29. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix
optimization. Front Bioeng Biotechnol. 2022;10:913579. elasticity directs stem cell lineage specification. Cell.
doi: 10.3389/fbioe.2022.913579
2006;126(4):677-689.
21. Ruberu K, Senadeera M, Rana S, et al. Coupling machine doi: 10.1016/j.cell.2006.06.044
learning with 3D bioprinting to fast track optimisation of 30. Aregueta-Robles UA, Martens PJ, Poole-Warren LA,
extrusion printing. Appl Mater Today. 2021;22:100914. Green RA. Tissue engineered hydrogels supporting
doi: 10.1016/j.apmt.2020.100914
3D neural networks. Acta Biomater. 2019;95:
22. Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D 269-284.
bioprinting technology based on machine learning: a review of doi: 10.1016/j.actbio.2018.11.044
recent trends and advances. Micromachines. 2022;13(3):363. 31. Chatterjee K, Lin-Gibson S, Wallace WE, et al. The effect of
doi: 10.3390/mi13030363
3D hydrogel scaffold modulus on osteoblast differentiation
23. Sun J, Yao K, An J, Jing L, Huang K, Huang D. Machine and mineralization revealed by combinatorial screening.
learning and 3D bioprinting. Int J Bioprint. 2023;9(4):717. Biomaterials. 2010;31(19):5051-5062.
doi: 10.18063/ijb.717 doi: 10.1016/j.biomaterials.2010.03.024
Volume 10 Issue 5 (2024) 573 doi: 10.36922/ijb.3814

