Page 44 - IJB-6-1
P. 44
Solvent-based extrusion 3D printing
Heterogeneous Aortic Valve Hydrogel Scaffolds. Based 3D Printing for Biomedical Applications. Adv Healthc
Biofabrication, 4(3):035005. DOI: 10.1088/1758- Mater, 7(8):e1701161. DOI: 10.1002/adhm.201701161.
5082/4/3/035005. 25. Schaefer D, Martin I, Jundt G, et al., 2002, Tissue-engineered
12. Duan B, Kapetanovic E, Hockaday LA, et al., 2014, Composites for the Repair of Large Osteochondral Defects.
Three-dimensional Printed Trileaflet Valve Conduits Arthritis Rheum, 46(9):2524–34.
Using Biological Hydrogels and Human Valve Interstitial 26. Chen J, Chen H, Li P, et al., 2011, Simultaneous Regeneration
Cells. Acta Biomater, 10(5):1836–46. DOI: 10.1016/j. of Articular Cartilage and Subchondral Bone in vivo Using
actbio.2013.12.005. MSCs Induced by a Spatially Controlled Gene Delivery
13. Jakus AE, Rutz AL, Jordan SW, et al., 2016, Hyperelastic System in Bilayered Integrated Scaffolds. Biomaterials,
“Bone”: A Highly Versatile, Growth Factor-free, 32(21):4793–805. DOI: 10.1016/j.biomaterials.2011.03.041.
Osteoregenerative, Scalable, and Surgically Friendly 27. Schaefer D, Martin I, Shastri P, et al., 2000, In vitro
Biomaterial. Sci Transl Med., 8(358):358ra127. DOI: Generation of Osteochondral Composites. Biomaterials,
10.1126/scitranslmed.aaf7704. 21(24):2599–606. DOI: 10.1016/s0142-9612(00)00127-7.
14. Gonçalves RM, Pereira AC, Pereira IO, et al., 2015, 28. Schacht K, Jungst T, Schweinlin M, et al., 2015, Biofabrication
Macrophage Response to Chitosan/poly-(γ-glutamic Acid) of Cell-loaded 3D Spider Silk Constructs. Angew Chem Int
Nanoparticles Carrying an Anti-inflammatory Drug. J Mater Ed, 54(9):2816–20. DOI: 10.1002/anie.201409846.
Sci, 26(4):167. DOI: 10.1007/s10856-015-5496-1. 29. Gao G, Yonezawa T, Hubbell K, et al., 2015, Inkjet-bioprinted
15. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D Acrylated Peptides and PEG Hydrogel with Human
Bioprinting Human Chondrocytes with Nanocellulose- Mesenchymal Stem Cells Promote Robust Bone and Cartilage
alginate Bioink for Cartilage Tissue Engineering Applications. Formation with Minimal Printhead Clogging. Biotechnol J,
Biomacromolecules, 16(5):1489–96. DOI: 10.1021/acs. 10(10):1568–77. DOI: 10.1002/biot.201400635.
biomac.5b00188. 30. Müller M, Becher J, Schnabelrauch M, et al., 2015,
16. Sun L, Parker ST, Syoji D, et al., 2012, Direct-Write Nanostructured Pluronic Hydrogels as Bioinks for
Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Co- 3D Bioprinting. Biofabrication, 7(3):035006. DOI:
Cultures. Adv Healthc Mater, 1(6):729–35. DOI: 10.1002/ 10.1088/1758-5090/7/3/035006.
adhm.201200057. 31. Wüst S, Godla ME, Müller R, et al., 2014, Tunable Hydrogel
17. Lee W, Debasitis JC, Lee VK, et al., 2009, Multi-layered Composite with Two-step Processing in Combination
Culture of Human Skin Fibroblasts and Keratinocytes Through with Innovative Hardware Upgrade for Cell-based Three-
Three-dimensional Freeform Fabrication. Biomaterials, dimensional Bioprinting. Acta Biomater, 10(2):630–40. DOI:
30(8):1587–95. DOI: 10.1016/j.biomaterials.2008.12.009. 10.1016/j.actbio.2013.10.016.
18. Liu W, Zhang YS, Heinrich MA, et al., 2017, Rapid 32. Blaeser A, Campos DF, Puster U, et al., 2016, Controlling
Continuous Multimaterial Extrusion Bioprinting. Adv Mater, Shear Stress in 3D Bioprinting is a Key Factor to Balance
29(3):1604630. Printing Resolution and Stem Cell Integrity. Adv Healthc
19. He Y, et al., 2016, Research on the Printability of Hydrogels Mater, 5(3):326–33. DOI: 10.1002/adhm.201500677.
in 3D Bioprinting. Sci Rep, 6:29977. 33. Ghosh S, Parker ST, Wang X, et al., 2008, Direct-write
20. Lewis JA, Gratson GM, 2004, Direct Writing in Three Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue
Dimensions. Mater Today, 7(7-8):32-39. Engineering Applications. Adv Funct Mater, 18(13):1883–9.
21. Jang TS, Jung HD, Pan HW, et al., 2018, 3D Printing DOI: 10.1002/adfm.200800040.
of Hydrogel Composite Systems: Recent Advances in 34. Miranda P, Pajares A, Saiz E, et al., 2008, Mechanical
Technology for Tissue Engineering. Int J Bioprint, 4(1):126. Properties of Calcium Phosphate Scaffolds Fabricated by
22. Ozbolat IT., 2016, 3D Bioprinting: Fundamentals, Principles Robocasting. J Biomed Mater Res Part A, 85(1):218–27.
And Applications. Academic Press, London. DOI: 10.1002/jbm.a.31587.
23. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D 35. Serra T, Planell JA, Navarro M, 2013, High-resolution PLA-
Bioprinting for Biomedical Devices and Tissue Engineering: based Composite Scaffolds Via 3-D Printing Technology. Acta
A Review of Recent Trends and Advances. Bioact Mater, Biomater, 9(3):5521–30. DOI: 10.1016/j.actbio.2012.10.041.
3(2):144–56. DOI: 10.1016/j.bioactmat.2017.11.008. 36. Gonçalves EM, Oliveira FJ, Silva RF, et al., 2016, Three-
24. Placone JK, Engler AJ, 2018, Recent Advances in Extrusion- dimensional Printed PCL-hydroxyapatite Scaffolds Filled
40 International Journal of Bioprinting (2020)–Volume 6, Issue 1

