Page 45 - IJB-6-1
P. 45

Zhang, et al.
               with CNTs for Bone Cell Growth Stimulation. J Biomed Mater   gelatin  Hydrogel  Scaffolds  and Their  Mechanical  Property
               Res Part B, 104(6):1210–9. DOI: 10.1002/jbm.b.33432.  Characterization.  Int J Polym Mater Polym Biomater,
           37.  Ning L, Guillemot A, Zhao J, et al., 2016, Influence of Flow   66(6):299–306. DOI: 10.1080/00914037.2016.1201830.
               Behavior  of  Alginate  Cell  Suspensions on Cell  Viability   51.  Srivas PK, Kapat K, Dadhich P, et al., 2017, Osseointegration
               and  Proliferation.  Tissue  Eng  Part  C,  22(7):652–62.  DOI:   Assessment of Extrusion Printed Ti6Al4V Scaffold Towards
               10.1089/ten.tec.2016.0011.                          Accelerated Skeletal Defect  Healing Via Tissue  In-growth.
           38.  Chen DX, Glaser, C, 2019, Extrusion Bioprinting of Scaffolds   Bioprinting, 6:8–17. DOI: 10.1016/j.bprint.2017.04.002.
               for Tissue Engineering Applications. Springer, Cham.  52.  Campos Marin A, Lacroix D, 2015, The Inter-sample Structural
           39.  Dávila  JL, d’Ávila  MA, 2019, Rheological  Evaluation  of   Variability of Regular Tissue-engineered Scaffolds Significantly
               Laponite/alginate  Inks for  3D Extrusion-based  Printing.   Affects the Micromechanical Local Cell Environment. Interface
               Int  J  Adv  Manuf  Technol,  101(1-4):675–86.  DOI:   Focus, 5(2):20140097. DOI 10.1098/rsfs.2014.0097.
               10.1007/s00170-018-2876-y.                      53.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
           40.  Liu S, Li  L, 2016, Recoverable  and Self-healing  Double   Bioprinting  of Heterogeneous  3D  Tissue Constructs  Using
               Network Hydrogel Based on κ-Carrageenan. ACS Appl Mater   Low-viscosity  Bioink.  Adv  Mater, 28(4):677–84. DOI:
               Interfaces, 8(43):29749–58. DOI: 10.1021/acsami.6b11363.  10.1002/adma.201503310.
           41.  Freeman FE, Kelly DJ, 2017, Tuning Alginate Bioink Stiffness   54.  Jeon O, Song SJ, Lee KJ, et al., 2007, Mechanical Properties
               and Composition for Controlled Growth Factor Delivery and   and Degradation  Behaviors of Hyaluronic Acid Hydrogels
               to Spatially Direct MSC fate Within Bioprinted Tissues. Sci   Cross-linked at Various Cross-linking Densities. Carbohydr.
               Rep, 7(1):17042. DOI: 10.1038/s41598-017-17286-1.   Polym, 70(3):251–7. DOI: 10.1016/j.carbpol.2007.04.002.
           42.  Chung JH, Naficy S, Yue Z, et al., 2013, Bio-ink Properties   55.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct
               and Printability for Extrusion Printing Living Cells. Biomater   3D  Bioprinting of Perfusable  Vascular Constructs Using  a
               Sci, 1(7):763–73. DOI: 10.1039/c3bm00012e.          Blend Bioink.  Biomaterials, 106:58–68. DOI: 10.1016/j.
           43.  Donderwinkel I, van Hest JC, Cameron NR, 2017, Bio-inks   biomaterials.2016.07.038.
               for 3D Bioprinting: Recent Advances and Future Prospects.   56.  Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
               Polym Chem, 8(31):4451–71. DOI: 10.1039/c7py00826k.  of Heterogeneous  Aortic  Valve Conduits with  Alginate/
           44.  Li H, Tan C, Li L, 2018, Review of 3D Printable Hydrogels   gelatin  Hydrogels.  J  Biomed Mater Res, 101(5):1255–64.
               and Constructs.  Mater Des, 159:20–38. DOI: 10.1016/j.  DOI: 10.1002/jbm.a.34420.
               matdes.2018.08.023.                             57.  Rutz AL, Hyland KE, Jakus AE, et al., 2015, A Multimaterial
           45.  Ouyang L,  Yao R, Zhao  Y,  et al.,  2016,  Effect  of  Bioink   Bioink  Method  for 3D Printing  Tunable,  Cell-Compatible
               Properties on Printability and Cell Viability for 3D Bioplotting   Hydrogels.  Adv Mater, 27(9):1607–14. DOI: 10.1002/
               of Embryonic Stem Cells. Biofabrication, 8(3):035020. DOI:   adma.201405076.
               10.1088/1758-5090/8/3/035020.                   58.  Wu Z, Su X, Xu Y, et al., 2016, Bioprinting Three-dimensional
           46.  Knowlton  S,  Yenilmez  B,  Anand S,  et  al., 2017,   Cell-laden Tissue Constructs with Controllable Degradation.
               Photocrosslinking-based  Bioprinting:  Examining    Sci Rep, 6:24474. DOI: 10.1038/srep24474.
               Crosslinking Schemes. Bioprinting, 5:10–8. DOI: 10.1016/j.  59.  Ragaert K,  Maeyaert G,  Martins CI,  et al., 2014, Bulk
               bprint.2017.03.001.                                 Compounding of PCL-PEO Blends for 3D  Plotting of
           47.  Schuurman  W, Levett PA, Pot MW,  et al., 2013, Gelatin-  Scaffolds for Cardiovascular Tissue Engineering. J Mater Sci
               methacrylamide Hydrogels as Potential Biomaterials for   Eng, 3(1):136. DOI: 10.4172/2169-0022.1000136.
               Fabrication of Tissue-engineered Cartilage Constructs. Macromol   60.  Remya K, Chandran S, Mani  S,  et  al., 2018, Hybrid
               Biosci, 13(5):551–61. DOI: 10.1002/mabi.201200471.  Polycaprolactone/Polyethylene   Oxide   Scaffolds   with
           48.  Pescosolido  L,  Schuurman  W, Malda  J,  et  al., 2011,   Tunable Fiber Surface Morphology, Improved Hydrophilicity
               Hyaluronic  Acid  and  Dextran-based  Semi-IPN Hydrogels   and Biodegradability  for Bone  Tissue Engineering
               as Biomaterials  for Bioprinting.  Biomacromolecules,   Applications. J  Biomater Sci, 29(12):1444–62. DOI:
               12(5):1831–8. DOI: 10.1021/bm200178w.               10.1080/09205063.2018.1465664.
           49.  Morrison F, 2001, Understanding  Rheology. Oxford   61.  Lyons JG, Blackie  P, Higginbotham  CL, 2008,  The
               University Press, New York.                         Significance  of  Variation  in  Extrusion  Speeds  and
           50.  You F, Wu X, Chen X, 2017, 3D Printing of Porous Alginate/  Temperatures on a PEO/PCL Blend Based Matrix for Oral

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1        41
   40   41   42   43   44   45   46   47   48   49   50