Page 45 - IJB-6-1
P. 45
Zhang, et al.
with CNTs for Bone Cell Growth Stimulation. J Biomed Mater gelatin Hydrogel Scaffolds and Their Mechanical Property
Res Part B, 104(6):1210–9. DOI: 10.1002/jbm.b.33432. Characterization. Int J Polym Mater Polym Biomater,
37. Ning L, Guillemot A, Zhao J, et al., 2016, Influence of Flow 66(6):299–306. DOI: 10.1080/00914037.2016.1201830.
Behavior of Alginate Cell Suspensions on Cell Viability 51. Srivas PK, Kapat K, Dadhich P, et al., 2017, Osseointegration
and Proliferation. Tissue Eng Part C, 22(7):652–62. DOI: Assessment of Extrusion Printed Ti6Al4V Scaffold Towards
10.1089/ten.tec.2016.0011. Accelerated Skeletal Defect Healing Via Tissue In-growth.
38. Chen DX, Glaser, C, 2019, Extrusion Bioprinting of Scaffolds Bioprinting, 6:8–17. DOI: 10.1016/j.bprint.2017.04.002.
for Tissue Engineering Applications. Springer, Cham. 52. Campos Marin A, Lacroix D, 2015, The Inter-sample Structural
39. Dávila JL, d’Ávila MA, 2019, Rheological Evaluation of Variability of Regular Tissue-engineered Scaffolds Significantly
Laponite/alginate Inks for 3D Extrusion-based Printing. Affects the Micromechanical Local Cell Environment. Interface
Int J Adv Manuf Technol, 101(1-4):675–86. DOI: Focus, 5(2):20140097. DOI 10.1098/rsfs.2014.0097.
10.1007/s00170-018-2876-y. 53. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
40. Liu S, Li L, 2016, Recoverable and Self-healing Double Bioprinting of Heterogeneous 3D Tissue Constructs Using
Network Hydrogel Based on κ-Carrageenan. ACS Appl Mater Low-viscosity Bioink. Adv Mater, 28(4):677–84. DOI:
Interfaces, 8(43):29749–58. DOI: 10.1021/acsami.6b11363. 10.1002/adma.201503310.
41. Freeman FE, Kelly DJ, 2017, Tuning Alginate Bioink Stiffness 54. Jeon O, Song SJ, Lee KJ, et al., 2007, Mechanical Properties
and Composition for Controlled Growth Factor Delivery and and Degradation Behaviors of Hyaluronic Acid Hydrogels
to Spatially Direct MSC fate Within Bioprinted Tissues. Sci Cross-linked at Various Cross-linking Densities. Carbohydr.
Rep, 7(1):17042. DOI: 10.1038/s41598-017-17286-1. Polym, 70(3):251–7. DOI: 10.1016/j.carbpol.2007.04.002.
42. Chung JH, Naficy S, Yue Z, et al., 2013, Bio-ink Properties 55. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct
and Printability for Extrusion Printing Living Cells. Biomater 3D Bioprinting of Perfusable Vascular Constructs Using a
Sci, 1(7):763–73. DOI: 10.1039/c3bm00012e. Blend Bioink. Biomaterials, 106:58–68. DOI: 10.1016/j.
43. Donderwinkel I, van Hest JC, Cameron NR, 2017, Bio-inks biomaterials.2016.07.038.
for 3D Bioprinting: Recent Advances and Future Prospects. 56. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D Bioprinting
Polym Chem, 8(31):4451–71. DOI: 10.1039/c7py00826k. of Heterogeneous Aortic Valve Conduits with Alginate/
44. Li H, Tan C, Li L, 2018, Review of 3D Printable Hydrogels gelatin Hydrogels. J Biomed Mater Res, 101(5):1255–64.
and Constructs. Mater Des, 159:20–38. DOI: 10.1016/j. DOI: 10.1002/jbm.a.34420.
matdes.2018.08.023. 57. Rutz AL, Hyland KE, Jakus AE, et al., 2015, A Multimaterial
45. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of Bioink Bioink Method for 3D Printing Tunable, Cell-Compatible
Properties on Printability and Cell Viability for 3D Bioplotting Hydrogels. Adv Mater, 27(9):1607–14. DOI: 10.1002/
of Embryonic Stem Cells. Biofabrication, 8(3):035020. DOI: adma.201405076.
10.1088/1758-5090/8/3/035020. 58. Wu Z, Su X, Xu Y, et al., 2016, Bioprinting Three-dimensional
46. Knowlton S, Yenilmez B, Anand S, et al., 2017, Cell-laden Tissue Constructs with Controllable Degradation.
Photocrosslinking-based Bioprinting: Examining Sci Rep, 6:24474. DOI: 10.1038/srep24474.
Crosslinking Schemes. Bioprinting, 5:10–8. DOI: 10.1016/j. 59. Ragaert K, Maeyaert G, Martins CI, et al., 2014, Bulk
bprint.2017.03.001. Compounding of PCL-PEO Blends for 3D Plotting of
47. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin- Scaffolds for Cardiovascular Tissue Engineering. J Mater Sci
methacrylamide Hydrogels as Potential Biomaterials for Eng, 3(1):136. DOI: 10.4172/2169-0022.1000136.
Fabrication of Tissue-engineered Cartilage Constructs. Macromol 60. Remya K, Chandran S, Mani S, et al., 2018, Hybrid
Biosci, 13(5):551–61. DOI: 10.1002/mabi.201200471. Polycaprolactone/Polyethylene Oxide Scaffolds with
48. Pescosolido L, Schuurman W, Malda J, et al., 2011, Tunable Fiber Surface Morphology, Improved Hydrophilicity
Hyaluronic Acid and Dextran-based Semi-IPN Hydrogels and Biodegradability for Bone Tissue Engineering
as Biomaterials for Bioprinting. Biomacromolecules, Applications. J Biomater Sci, 29(12):1444–62. DOI:
12(5):1831–8. DOI: 10.1021/bm200178w. 10.1080/09205063.2018.1465664.
49. Morrison F, 2001, Understanding Rheology. Oxford 61. Lyons JG, Blackie P, Higginbotham CL, 2008, The
University Press, New York. Significance of Variation in Extrusion Speeds and
50. You F, Wu X, Chen X, 2017, 3D Printing of Porous Alginate/ Temperatures on a PEO/PCL Blend Based Matrix for Oral
International Journal of Bioprinting (2020)–Volume 6, Issue 1 41

