Page 92 - IJB-6-1
P. 92

Hydrolytic expansion accelerates Fe biodegradation
           Acknowledgments                                         pp. 225–80. DOI: 10.1007/978-3-319-68025-5_9.
                                                               9.   Deng Y, Yang Y, Gao C, et al., 2018, Mechanism for Corrosion
           This study was supported by the following funds:        Protection  of  β-TCP  Reinforced  ZK60  Via  Laser  Rapid
           (1)  The Natural Science Foundation of China            Solidification. Int J Bioprint, 4(1):27–41. DOI: 10.18063/IJB.
           (51705540, 51935014, 51905553, 81871494,                v4i1.124.
           81871498); (2) Hunan Provincial Natural Science     10.  Hermawan H, Dubé D, Mantovani D, 2007, Development of
           Foundation of China (2018JJ3671, 2019JJ50774,           Degradable Fe-35Mn Alloy for Biomedical Application. Adv
           2019JJ50588); (3) JiangXi Provincial  Natural           Mater Res,  15:107–12.  DOI:  10.4028/www.scientific.net/
           Science Foundation of China (20192ACB20005);            AMR.15-17.107.
           (4) Guangdong Province Higher  Vocational           11.  Schinhammer M, Steiger P, Moszner F,  et al. 2013,
           Colleges and Schools Pearl River Scholar Funded         Degradation  Performance  of Biodegradable  FeMnC (Pd)
           Scheme (2018); (5) The Open Sharing Fund for            Alloys.  Mater Sci Eng C, 33:1882–93. DOI: 10.1016/j.
           the Large-scale  Instruments and Equipments  of         msec.2012.10.013.
           Central South University; and (6) The Project of    12.  Zhou J, Yang Y, Alonso Frank M, et al., 2016, Accelerated
           Hunan Provincial Science and  Technology Plan           Degradation  Behavior  and  Cytocompatibility  of Pure Iron
           (2017RS3008).                                           Treated with Sandblasting.  ACS  Appl Mater Interfaces,

           References                                              8:26482–92. DOI: 10.1021/acsami.6b07068.
                                                               13.  Moravej M, Purnama A, Fiset M, et al., 2010, Electroformed
           1.   Gao C,  Yao  M, Li  S,  et  al., 2019, Highly  Biodegradable   Pure Iron as a New Biomaterial for Degradable Stents: In Vitro
               and Bioactive  Fe-Pd-Bredigite  Biocomposites  Prepared   Degradation and Preliminary Cell  Viability  Studies.  Acta
               by Selective  Laser Melting.  J  Adv Res, 20:91–104. DOI:   Biomater, 6:1843–51. DOI: 10.1016/j.actbio.2010.01.008.
               10.1016/j.jare.2019.06.001.                     14.  Jiang W, Wang J, Yu W, et al., 2019, In Situ Formation of a Gradient
           2.   Shuai C, Li S, Peng S, et al., 2019, Biodegradable Metallic   Mg2Si/Mg Composite with Good Biocompatibility. Surf Coat
               Bone  Implants.  Mater  Chem Front, 3(1):544–62.  DOI:   Technol, 361:255–62. DOI: 10.1016/j.surfcoat.2018.12.107.
               10.1039/C8QM00507A.                             15.  Sikora-Jasinska M, Paternoster C, Mostaed E, et al., 2017,
           3.   Yang YY, He C, Dianyu E, et al., 2019, Mg Bone Implant:   Synthesis, Mechanical  Properties  and Corrosion Behavior
               Features,  Developments  and  Perspectives.  Mater  Design,   of Powder Metallurgy Processed Fe/Mg2Si Composites
               185:108259. DOI: 10.1016/j.matdes.2019.108259.      for Biodegradable Implant Applications. Mater Sci Eng C,
           4.   Gao C, Yao M, Shuai C, et al., 2019, Nano-SiC Reinforced Zn   81(2):511–21. DOI: 10.1016/j.msec.2017.07.049.
               Biocomposites Prepared Via Laser Melting: Microstructure,   16.  Lee JY, An J, Chua CK, 2017, Fundamentals and Applications
               Mechanical  Properties and Biodegradability.  J  Mater Sci   of 3D Printing for Novel Materials.  Appl Mater Today,
               Tech, 35:2608–17. DOI: 10.1016/j.jmst.2019.06.010.  7:120–33. DOI: 10.1016/j.apmt.2017.02.004.
           5.   Shuai C,  Yang  W, He C,  et al., 2019,  A Magnetic   17.  An J, Teoh JEM, Suntornnond R, et al., 2015, Design and
               Micro-Environment  in  Scaffolds  for  Stimulating  Bone   3D Printing of Scaffolds and Tissues. Engineering, 1:261–68.
               Regeneration.  Mater Des, 185:108275. DOI:  10.1016/j.  DOI: 10.15302/J-ENG-2015061.
               matdes.2019.108275.                             18.  Sing SL, Huang S, Yeong WY, 2020, Effect of Solution Heat
           6.   Wang G, Qi F,  Yang  W,  et al., 2019, Crystallinity  and   Treatment on Microstructure and Mechanical Properties of
               Reinforcement  in Poly-L-Lactic  Acid  Scaffold  Induced   Laser Powder Bed Fusion Produced Cobalt-28chromium-
               by Carbon Nanotubes.  Advances in Polymer Technology,   6molybdenum. Mater Sci Eng A, 769:138511. DOI: 10.1016/j.
               2019:10. DOI: 10.1155/2019/8625325.                 msea.2019.138511.
           7.   He S, Yang S, Zhang Y, et al., 2019, LncRNA ODIR1 Inhibits   19.  Nasab MH, Giussani A, Gastaldi D, et al., 2019, Effect of
               Osteogenic  Differentiation  of hUC-MSCs  Through the   Surface and Subsurface Defects on Fatigue Behavior of
               FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis,   AlSi10Mg  Alloy Processed by Laser Powder Bed Fusion
               10:1–16. DOI: 10.1038/s41419-019-2148-2.            (L-PBF). Metals, 9:1063. DOI: 10.3390/met9101063.
           8.   Zivic F, Grujovic N, Pellicer E, et al., 2018, Biodegradable   20.  Yu  W, Sing S, Chua C,  et al., 2019, Particle-Reinforced
               Metals as Biomaterials  for Clinical  Practice:  Iron-Based   Metal Matrix Nanocomposites Fabricated  by Selective
               Materials, Biomaterials in Clinical Practice. Springer, Berlin.   Laser Melting: A State of the Art Review. Prog Mater Sci,

           88                          International Journal of Bioprinting (2020)–Volume 6, Issue 1
   87   88   89   90   91   92   93   94   95   96   97