Page 92 - IJB-6-1
P. 92
Hydrolytic expansion accelerates Fe biodegradation
Acknowledgments pp. 225–80. DOI: 10.1007/978-3-319-68025-5_9.
9. Deng Y, Yang Y, Gao C, et al., 2018, Mechanism for Corrosion
This study was supported by the following funds: Protection of β-TCP Reinforced ZK60 Via Laser Rapid
(1) The Natural Science Foundation of China Solidification. Int J Bioprint, 4(1):27–41. DOI: 10.18063/IJB.
(51705540, 51935014, 51905553, 81871494, v4i1.124.
81871498); (2) Hunan Provincial Natural Science 10. Hermawan H, Dubé D, Mantovani D, 2007, Development of
Foundation of China (2018JJ3671, 2019JJ50774, Degradable Fe-35Mn Alloy for Biomedical Application. Adv
2019JJ50588); (3) JiangXi Provincial Natural Mater Res, 15:107–12. DOI: 10.4028/www.scientific.net/
Science Foundation of China (20192ACB20005); AMR.15-17.107.
(4) Guangdong Province Higher Vocational 11. Schinhammer M, Steiger P, Moszner F, et al. 2013,
Colleges and Schools Pearl River Scholar Funded Degradation Performance of Biodegradable FeMnC (Pd)
Scheme (2018); (5) The Open Sharing Fund for Alloys. Mater Sci Eng C, 33:1882–93. DOI: 10.1016/j.
the Large-scale Instruments and Equipments of msec.2012.10.013.
Central South University; and (6) The Project of 12. Zhou J, Yang Y, Alonso Frank M, et al., 2016, Accelerated
Hunan Provincial Science and Technology Plan Degradation Behavior and Cytocompatibility of Pure Iron
(2017RS3008). Treated with Sandblasting. ACS Appl Mater Interfaces,
References 8:26482–92. DOI: 10.1021/acsami.6b07068.
13. Moravej M, Purnama A, Fiset M, et al., 2010, Electroformed
1. Gao C, Yao M, Li S, et al., 2019, Highly Biodegradable Pure Iron as a New Biomaterial for Degradable Stents: In Vitro
and Bioactive Fe-Pd-Bredigite Biocomposites Prepared Degradation and Preliminary Cell Viability Studies. Acta
by Selective Laser Melting. J Adv Res, 20:91–104. DOI: Biomater, 6:1843–51. DOI: 10.1016/j.actbio.2010.01.008.
10.1016/j.jare.2019.06.001. 14. Jiang W, Wang J, Yu W, et al., 2019, In Situ Formation of a Gradient
2. Shuai C, Li S, Peng S, et al., 2019, Biodegradable Metallic Mg2Si/Mg Composite with Good Biocompatibility. Surf Coat
Bone Implants. Mater Chem Front, 3(1):544–62. DOI: Technol, 361:255–62. DOI: 10.1016/j.surfcoat.2018.12.107.
10.1039/C8QM00507A. 15. Sikora-Jasinska M, Paternoster C, Mostaed E, et al., 2017,
3. Yang YY, He C, Dianyu E, et al., 2019, Mg Bone Implant: Synthesis, Mechanical Properties and Corrosion Behavior
Features, Developments and Perspectives. Mater Design, of Powder Metallurgy Processed Fe/Mg2Si Composites
185:108259. DOI: 10.1016/j.matdes.2019.108259. for Biodegradable Implant Applications. Mater Sci Eng C,
4. Gao C, Yao M, Shuai C, et al., 2019, Nano-SiC Reinforced Zn 81(2):511–21. DOI: 10.1016/j.msec.2017.07.049.
Biocomposites Prepared Via Laser Melting: Microstructure, 16. Lee JY, An J, Chua CK, 2017, Fundamentals and Applications
Mechanical Properties and Biodegradability. J Mater Sci of 3D Printing for Novel Materials. Appl Mater Today,
Tech, 35:2608–17. DOI: 10.1016/j.jmst.2019.06.010. 7:120–33. DOI: 10.1016/j.apmt.2017.02.004.
5. Shuai C, Yang W, He C, et al., 2019, A Magnetic 17. An J, Teoh JEM, Suntornnond R, et al., 2015, Design and
Micro-Environment in Scaffolds for Stimulating Bone 3D Printing of Scaffolds and Tissues. Engineering, 1:261–68.
Regeneration. Mater Des, 185:108275. DOI: 10.1016/j. DOI: 10.15302/J-ENG-2015061.
matdes.2019.108275. 18. Sing SL, Huang S, Yeong WY, 2020, Effect of Solution Heat
6. Wang G, Qi F, Yang W, et al., 2019, Crystallinity and Treatment on Microstructure and Mechanical Properties of
Reinforcement in Poly-L-Lactic Acid Scaffold Induced Laser Powder Bed Fusion Produced Cobalt-28chromium-
by Carbon Nanotubes. Advances in Polymer Technology, 6molybdenum. Mater Sci Eng A, 769:138511. DOI: 10.1016/j.
2019:10. DOI: 10.1155/2019/8625325. msea.2019.138511.
7. He S, Yang S, Zhang Y, et al., 2019, LncRNA ODIR1 Inhibits 19. Nasab MH, Giussani A, Gastaldi D, et al., 2019, Effect of
Osteogenic Differentiation of hUC-MSCs Through the Surface and Subsurface Defects on Fatigue Behavior of
FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis, AlSi10Mg Alloy Processed by Laser Powder Bed Fusion
10:1–16. DOI: 10.1038/s41419-019-2148-2. (L-PBF). Metals, 9:1063. DOI: 10.3390/met9101063.
8. Zivic F, Grujovic N, Pellicer E, et al., 2018, Biodegradable 20. Yu W, Sing S, Chua C, et al., 2019, Particle-Reinforced
Metals as Biomaterials for Clinical Practice: Iron-Based Metal Matrix Nanocomposites Fabricated by Selective
Materials, Biomaterials in Clinical Practice. Springer, Berlin. Laser Melting: A State of the Art Review. Prog Mater Sci,
88 International Journal of Bioprinting (2020)–Volume 6, Issue 1

