Page 93 - IJB-6-1
P. 93

Shuai, et al.
               104:330-379. DOI: 10.1016/j.pmatsci.2019.04.006.    msec.2019.110486.
           21.  Dadbakhsh S, Mertens  R, Hao  L,  et  al., 2019, Selective   33.  Shuai C, Xu Y, Feng P, et al., 2019, Antibacterial Polymer
               Laser Melting to Manufacture “In Situ” Metal Matrix   Scaffold Based on Mesoporous  Bioactive  Glass  Loaded
               Composites: A Review. Adv Eng Mater, 21:1801244. DOI:   with In Situ Grown Silver. Chem Eng J, 374:304–15. DOI:
               10.1002/adem.201801244.                             10.1016/j.cej.2019.03.273.
           22.  Hariharan K, Arumaikkannu G, 2016, Structural, Mechanical   34.  Wang S, Xu Y, Zhou J, et al., 2017, In Vitro Degradation and
               and  In Vitro Studies  on Pulsed Laser  Deposition  of   Surface  Bioactivity  of Iron-Matrix  Composites  Containing
               Hydroxyapatite  on  Additive  Manufactured  Polyamide   Silicate-Based  Bioceramic.  Bioact  Mater, 2:10–18. DOI:
               Substrate.  Int  J  Bioprint,  2:85–94.  DOI: 10.1016/S0021-  10.1016/j.bioactmat.2016.12.001.
               9290(06)83793-0.                                35.  Shuai C, Li S, Wang G, et al., 2019, Strong Corrosion Induced
           23.  Lepowsky E,  Tasoglu S, 2018, 3D Printing  for Drug   by Carbon Nanotubes to Accelerate Fe Biodegradation. Mater
               Manufacturing:  A  Perspective  on the  Future  of   Sci Eng C, 104(5):109935. DOI: 10.1016/j.msec.2019.109935.
               Pharmaceuticals. Int J Bioprint, 4:119. DOI: 10.18063/IJB.  36.  Wang H, Zheng  Y,  Li  Y,  et  al., 2017,  Improvement  of
               v4i1.119.                                           In Vitro Corrosion and Cytocompatibility of Biodegradable
           24.  Yap CY, Chua CK, Dong ZL, et al., 2015, Review of Selective   Fe Surface Modified by Zn Ion Implantation. Appl Surf Sci,
               Laser Melting: Materials and Applications. Appl Phys Rev,   403(12):168–76. DOI: 10.1016/j.apsusc.2017.01.158.
               2:041101. DOI: 10.1063/1.4935926.               37.  Shuai  C,  Cheng Y, Yang Y,  et al., 2019, Laser  Additive
           25.  Loh LE, Chua CK,  Yeong  WY,  et al., 2015, Numerical   Manufacturing of Zn-2Al Part for Bone Repair: Formability,
               Investigation  and an Effective  Modelling  on the  Selective   Microstructure and Properties. J Alloys Comp, 798:606–15.
               Laser Melting (SLM) Process with Aluminium Alloy 6061.   DOI: 10.1016/j.jallcom.2019.05.278.
               Int J Heat Mass Transfer, 80:288–300. DOI: 10.1016/j.  38.  Cheng J, Liu B, Wu Y, et al., 2013, Comparative In Vitro Study
               ijheatmasstransfer.2014.09.014.                     on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable
           26.  Sun Z, Tan X, Tor SB, et al. 2018, Simultaneously Enhanced   Metals.  J  Mater Sci Tech, 29:619–27. DOI: 10.1016/j.
               Strength and Ductility for 3D-Printed Stainless Steel 316L by   jmst.2013.03.019.
               Selective Laser Melting. NPG Asia Materials, 10:127. DOI:   39.  Shuai C, Liu G, Yang Y, et al., 2019, Functionalized BaTiO3
               10.1038/s41427-018-0018-5.                          Enhances  Piezoelectric  Effect  Towards Cell  Response of
           27.  Li Y, Zhou K, Tan P, et al., 2018, Modeling Temperature and   Bone Scaffold. Colloids Surf, 3:110587–94. DOI: 10.1016/j.
               Residual Stress Fields in Selective Laser Melting. Int J Mech   colsurfb.2019.110587.
               Sci, 136:24–35. DOI: 10.1016/j.ijmecsci.2017.12.001.  40.  Feng P, Kong Y, Yu L, et al., 2019, Molybdenum Disulfide
           28.  Yu  W, Sing SL, Chua CK,  et  al.,  2019,  Influence  of  Re-  Nanosheets Embedded  with Nanodiamond Particles:  Co-
               Melting on Surface Roughness  and Porosity of AlSi10Mg   Dispersion Nanostructures as Reinforcements  for Polymer
               Parts Fabricated by Selective Laser Melting. J Alloys Compd,   Scaffolds.  Appl  Mater  Today,  17:216–26.  DOI: 10.1016/j.
               792:574–81. DOI: 10.1016/j.jallcom.2019.04.017.     apmt.2019.08.005.
           29.  Kuo C, Chua C, Peng P, et al., 2019, Microstructure Evolution   41.  Prakasam M, Locs J, Salma-Ancane K,  et al., 2017,
               and Mechanical Property Response Via 3D Printing Parameter   Biodegradable  Materials and Metallic Implants a Review.
               Development of Al-Sc alloy. Virtual Phys Prototyp, 15:1–10.   J Funct Biomater, 8:44. DOI: 10.3390/jfb8040044.
               DOI: 10.1080/17452759.2019.1698967.             42.  Gao C, Peng S, Feng P,  et  al., 2017, Bone  Biomaterials
           30.  Vanarase  AU, Muzzio FJ,  2011, Effect of Operating   and Interactions with Stem Cells. Bone Res, 5:17059. DOI:
               Conditions and Design Parameters in a Continuous Powder   10.1038/boneres.2017.59.
               Mixer.  Powder  Technol, 208:26–36. DOI: 10.1016/j.  43.  Dehestani M, Adolfsson E, Stanciu LA, 2016, Mechanical
               powtec.2010.11.038.                                 Properties and Corrosion Behavior of Powder Metallurgy
           31.  Portillo  PM, 2008, Quality by Design for Continuous   Iron-Hydroxyapatite Composites for Biodegradable Implant
               Powder Mixing. Rutgers University-Graduate School, New   Applications.  Mater  Des, 109:556–69.  DOI: 10.1016/j.
               Brunswick.                                          matdes.2016.07.092.
           32.  Shuai C, Zan J, Yang Y, et al., 2019, Surface Modification   44.  Kato K,  Ochiai S,  Yamamoto  A,  et al., 2013, Novel
               Enhances  Interfacial  Bonding in PLLA/MgO Bone     Multilayer  Ti  Foam  With  Cortical  Bone  Strength  and
               Scaffold.  Mater Sci Eng C, 108:110486. DOI: 10.1016/j.  Cytocompatibility.  Acta  Biomater, 9:5802–09. DOI:

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 1        89
   88   89   90   91   92   93   94   95   96   97   98