Page 83 - IJB-6-4
P. 83
Soman and Vijayavenkataraman
DOI: 10.1016/j.mtbio.2019.100008. Review of Trends and Limitations in Hydrogel-rapid
148. Mosadegh B, Xiong G, Dunham S, et al., 2015, Current Prototyping for Tissue Engineering. Biomaterials, 33:6020-
Progress in 3D Printing for Cardiovascular Tissue Engineering. 41. DOI: 10.1016/j.biomaterials.2012.04.050.
Biomed Mater (Bristol), 10:034002. DOI: 10.1088/1748- 153. Zhao T, Zhang ZN, Rong Z, et al., 2011, Immunogenicity
6041/10/3/034002. of Induced Pluripotent Stem Cells. Nature, 474:212–6.
149. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D Bioprinting DOI: 10.1038/nature10135.
for Engineering Complex Tissues. Biotechnol Adv, 34:422– 154. Vijayavenkataraman S, Yan WC, Lu WF, et al., 2018,
34. DOI: 10.1016/j.biotechadv.2015.12.011. 3D Bioprinting of Tissues and Organs for Regenerative
150. Zhang XF, Huang Y, Gao G, et al., 2017, Current Progress Medicine. Adv Drug Deliv Rev, 132:296–332. DOI: 10.1016/j.
in Bioprinting. In: Tripathi A, Melo JS, editor. Advances addr.2018.07.004.
in Biomaterials for Biomedical Applications. Springer, 155. Zhang S, Vijayavenkataraman S, Lu WF, et al., 2019,
Singapore, pp. 227–59. DOI: 10.1016/j.mtbio.2019.100008. A Review on the Use of Computational Methods to
151. Skardal A, Atala A, 2015, Biomaterials for Integration with Characterize, Design, and Optimize Tissue Engineering
3-D Bioprinting. Annals of Biomedical Engineering, 43:730– Scaffolds, with a Potential in 3D Printing Fabrication. J
46. DOI: 10.1007/s10439-014-1207-1. Biomed Mater Res Part B Appl Biomater, 107:1329–51.
152. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A DOI: 10.1002/jbm.b.34226.
International Journal of Bioprinting (2020)–Volume 6, Issue 4 79

