Page 79 - IJB-6-4
P. 79

Soman and Vijayavenkataraman
               2015:794632. DOI: 10.1155/2015/794632.          60.  Kwong G, Marquez HA, Yang C, et al., 2019, Generation
           49.  Huangfu D, Maehr R, Guo  W,  et  al., 2008, Induction   of a Purified iPSC-Derived Smooth Muscle-like Population
               of  Pluripotent  Stem  Cells  by  Defined  Factors  is  Greatly   for Cell Sheet Engineering. Stem Cell Reports, 13:499–514.
               Improved by Small-molecule  Compounds.  Nat Biotechnol,   DOI: 10.1016/j.stemcr.2019.07.014.
               26:795–7. DOI: 10.1038/nbt1418.                 61.  Abdul Manaph NP, Sivanathan KN, Nitschke J, et al., 2019,
           50.  Shi Y, Desponts C, Do JT, et al., 2008, Induction of Pluripotent   An  Overview  on  Small  Molecule-induced  Differentiation
               Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and   of Mesenchymal Stem Cells Into Beta Cells for Diabetic
               Klf4 with Small-Molecule  Compounds.  Cell  Stem Cell,   Therapy. Stem Cell Res Ther, 10:2194. DOI: 10.1186/s13287-
               3:568–74. DOI: 10.1016/j.stem.2008.10.004.          019-1396-5.
           51.  Vijayavenkataraman  S, Kannan S, Cao  T,  et  al., 2019,   62.  Tabar  V, Studer L, 2014, Pluripotent Stem Cells in
               3D-Printed  PCL/PPy  Conductive  Scaffolds  as  Three-  Regenerative Medicine: Challenges and Recent Progress. Nat
               Dimensional  Porous Nerve  Guide  Conduits  (NGCs) for   Rev Genet, 15:82–92. DOI: 10.1038/nrg3563.
               Peripheral  Nerve  Injury  Repair.  Front  Bioeng  Biotechnol,   63.  Kang H, Shih YR, Nakasaki M, et al., Small Molecule Driven
               7:266. DOI: 10.3389/fbioe.2019.00266.               Direct Conversion of Human Pluripotent Stem Cells into
           52.  Hou  P,  Li  Y,  Zhang  X,  et al., 2013, Pluripotent  Stem   Functional Osteoblasts. Sci Adv, 2:e1600691. DOI: 10.1126/
               Cells  Induced from Mouse Somatic  Cells  by Small-  sciadv.1600691.
               molecule  Compounds.  Science, 341:651–4. DOI: 10.1126/  64.  Ong CS,  Yesantharao  P, Huang CY,  et al., 2018, 3D
               science.1239278.                                    Bioprinting Using Stem Cells. Pediatr Res, 83:223–31.
           53.  Zhang  Y,  Hu  W,  Ma  K,  et al., 2019, Reprogramming  of   65.  Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future
               Keratinocytes as Donor or Target Cells Holds Great Promise   Perspectives in Extrusion-based  Bioprinting.  Biomaterials,
               for Cell Therapy and Regenerative Medicine. Stem Cell Rev   76:321–43. DOI: 10.1016/j.biomaterials.2015.10.076.
               Reports, 15:680–9. DOI: 10.1007/s12015-019-09900-8.  66.  Reid JA, Mollica PA, Johnson GD, et al., 2016, Accessible
           54.  Aasen  T,  Raya A, Barrero  MJ,  et  al.,  2008,  Efficient  and   Bioprinting: Adaptation of a Low-cost 3D-Printer for Precise
               Rapid  Generation  of Induced  Pluripotent  Stem  Cells   Cell Placement and Stem Cell Differentiation. Biofabrication,
               from Human Keratinocytes.  Nat Biotechnol, 26:1276–84.   8:025017. DOI: 10.1088/1758-5090/8/2/025017.
               DOI: 10.1038/nbt.1503.                          67.  Gu Q,  Tomaskovic-Crook E,  Wallace  GG,  et al., 2017,
           55.  Sun N, Panetta  NJ, Gupta DM,  et  al., 2009, Feeder-free   3D Bioprinting  Human Induced Pluripotent  Stem Cell
               Derivation of Induced Pluripotent Stem Cells from  Adult   Constructs for  In Situ Cell  Proliferation  and Successive
               Human  Adipose Stem  Cells.  Proc Natl  Acad Sci USA,   Multilineage Differentiation. Adv Healthc Mater, 6:1700175.
               106:15720–5. DOI: 10.1073/pnas.0908450106.          DOI: 10.1002/adhm.201700175.
           56.  Medvedev  SP,  Shevchenko AI,  Zakian  SM,  2010,  Induced   68.  Colosi S, Soloperto B, Benedetti T, et al., 2019, 3D Bioprinted
               Pluripotent  Stem  Cells:  Problems and  Advantages  when   Human Cortical  Neural Constructs Derived from Induced
               Applying them in Regenerative Medicine. Acta Nat, 2:18–27.   Pluripotent Stem Cells. J Clin Med, 8:1595. DOI: 10.3390/
               DOI: 10.32607/20758251-2010-2-2-18-27.              jcm8101595.
           57.  Kim Y,  Rim YA, Yi  H,  et  al., 2016,  The  Generation  of   69.  Nguyen D, Hägg DA,  Forsman A,  et al., 2017, Cartilage
               Human  Induced  Pluripotent  Stem  Cells  from  Blood  Cells:   Tissue  Engineering  by  the  3D Bioprinting  of  iPS Cells
               An Efficient Protocol Using Serial Plating of Reprogrammed   in a Nanocellulose/Alginate  Bioink.  Sci Rep, 7:6684.
               Cells  by Centrifugation.  Stem Cells  Int, 2016:1329459.   DOI: 10.1038/s41598-017-00690-y.
               DOI: 410.1155/2016/1329459.                     70.  Skylar-Scott MA, Uzel SG, Nam LL,  et al., 2019,
           58.  Okumura T, Horie Y, Lai CY, et al., 2019, Robust and Highly   Biomanufacturing  of  Organ-Specific  Tissues  with  High
               Efficient  hiPSC  Generation  from  Patient  Non-mobilized   Cellular Density and Embedded Vascular Channels. Sci Adv,
               Peripheral  Blood-derived  CD34+ Cells Using the  Auto-  5:eaaw2459. DOI: 10.1126/sciadv.aaw2459.
               erasable  Sendai Virus Vector.  Stem  Cell  Res  Ther,  10:185.   71.  Zhang C, Yang F, Cornelia R, et al., 2011, Hypoxia-inducible
               DOI: 10.1186/s13287-019-1273-2.                     Factor-1 is a Positive Regulator of Sox9 Activity in Femoral
           59.  Corbett JL, Duncan SA, 2019, iPSC-Derived Hepatocytes as   Head  Osteonecrosis.  Bone, 48:507–13. DOI: 10.1016/j.
               a Platform for Disease Modeling and Drug Discovery. Front   bone.2010.10.006.
               Med, 6:265. DOI: 10.3389/fmed.2019.00265.       72.  Sun  AX, Lin H, Beck  AM,  et al., 2015, Projection

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 4        75
   74   75   76   77   78   79   80   81   82   83   84