Page 80 - IJB-6-4
P. 80

Applications of 3D bioprinted iPSCs
               Stereolithographic Fabrication of Human Adipose Stem Cell-  84.  Zhang B, Gao L, Ma L, et al., 2017, 3D Bioprinting: A Novel
               Incorporated  Biodegradable  Scaffolds  for  Cartilage  Tissue   Avenue for Manufacturing Tissues and Organs. Engineering,
               Engineering. Front Bioeng Biotechnol, 3:115. DOI: 10.3389/  5:777–94.
               fbioe.2015.00115.                               85.  Varkey M, Visscher DO, van Zuijlen PP, et al., 2019, Skin
           73.  Ma X, Qu X, Zhu W, et al., 2016, Deterministically Patterned   Bioprinting:  The Future of Burn  Wound Reconstruction?
               Biomimetic  Human iPSC-Derived Hepatic  Model  Via   Burn Trauma, 7:8171. DOI: 10.1186/s41038-019-0142-7.
               Rapid  3D Bioprinting.  Proc Natl  Acad  Sci, 113:2206–11.   86.  Kamel  RA, Ong JF, Eriksson E,  et  al.,  2013, Tissue
               DOI: 10.1073/pnas.1524510113.                       Engineering of Skin. J Am Coll Surg, 217:533–55.
           74.  Fairbanks BD, Schwartz  MP, Bowman  CN,  et  al., 2009,   87.  Yang B, Lui C, Yeung E,  et  al., 2019, A Net Mold-Based
               Photoinitiated  Polymerization  of PEG-diacrylate  with   Method of Biomaterial-Free  Three-Dimensional  Cardiac
               Lithium     Phenyl-2,4,6-Trimethylbenzoylphosphinate:  Tissue Creation.  Tissue Eng Part C Methods, 25:243–52.
               Polymerization  Rate  and Cytocompatibility.  Biomaterials,   DOI: 10.1089/ten.tec.2019.0003.
               30:6702–7. DOI: 10.1016/j.biomaterials.2009.08.055.  88.  Vijayavenkataraman  S, Kannan S, Cao  T,  et  al., 2019,
           75.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-  3D-Printed  PCL/PPy  Conductive  Scaffolds  as  Three-
               Based Bioprinting Process, Materials,  Applications  and   Dimensional  Porous Nerve  Guide  Conduits  (NGCs) for
               Regulatory  Challenges.  Biofabrication,  12:022001.  Peripheral  Nerve  Injury  Repair.  Front  Bioeng  Biotechnol,
               DOI: 410.1088/1758-5090/ab6034.                     7:266. DOI: 10.3389/fbioe.2019.00266.
           76.  Fattah  AR, Meleca  E,  Mishriki  S,  et  al.,  2016,  In  Situ   89.  Chen YM, Chen LH, Li MP, et al., 2017, Xeno-free Culture
               3D Label-Free  Contactless Bioprinting of Cells through   of Human Pluripotent  Stem Cells on Oligopeptide-Grafted
               Diamagnetophoresis.  ACS  Biomater  Sci  Eng, 2:2133–8.   Hydrogels with Various Molecular Designs. Sci Rep, 7:45146.
               DOI: 10.1021/acsbiomaterials.6b00614.               DOI: 10.1038/srep45146.
           77.  Gudapati  H, Dey M, Ozbolat I, 2016,  A Comprehensive   90.  Wiley  LA,  Anfinson  KR,  Cranston  CM,  et al., 2017,
               Review on Droplet-based Bioprinting: Past, Present   Generation of Xeno-Free, cGMP-Compliant Patient-Specific
               and Future.  Biomaterials, 102:20–42. DOI: 10.1016/j.  iPSCs from Skin Biopsy.  Curr Protoc Stem Cell Biol,
               biomaterials.2016.06.012.                           42:4A.12.1–4A.12.4. Doi: 10.1002/cpsc.30.
           78.  Guillotin B, Souquet A, Catros S, et al., 2010, Laser Assisted   91.  Pruksananonda K, Rungsiwiwut R, 2016, Moving
               Bioprinting  of Engineered  Tissue with High Cell Density   toward xeno-free culture of human pluripotent  stem
               and  Microscale  Organization.  Biomaterials, 31:7250–6.   cells. In: Pluripotent Stem Cells: From the Bench to the
               DOI: 10.1016/j.biomaterials.2010.05.055.            Clinic.  BoD-Books on Demand, Norderstedt,  Germany.
           79.  Li Y, Jiang X, Li L, et al., 2018, 3D Printing Human Induced   DOI: 10.5772/62770.
               Pluripotent  Stem  Cells  with Novel Hydroxypropyl Chitin   92.  Boreström  C,  Simonsson S, Enochson  L,  et  al.,  2014,
               Bioink: Scalable Expansion and Uniform  Aggregation.   Footprint-Free Human Induced Pluripotent Stem Cells From
               Biofabrication, 10:044101. DOI: 10.1088/1758-5090/aacfc3.  Articular Cartilage With Redifferentiation Capacity: A First
           80.  Ng  WL, Chua CK, Shen  YF, 2019, Print Me  An Organ!   Step Toward a Clinical-Grade Cell Source. Stem Cells Transl
               Why We Are  Not There Yet.  Prog Polym Sci, 97:101145.   Med, 3:433–47. DOI: 10.5966/sctm.2013-0138.
               DOI: 10.1016/j.progpolymsci.2019.101145.        93.  Attwood S, Edel M, 2019, iPS-Cell  Technology and the
           81.  Romanazzo S, Nemec S, Roohani I, 2019, iPSC Bioprinting:   Problem of Genetic Instability can it ever be Safe for Clinical
               Where are we at? Materials (Basel), 12:2453. DOI: 10.3390/  Use? J Clin Med, 8:288. DOI: 10.3390/jcm8030288.
               ma12152453.                                     94.  Matz P,  Wruck  W, Fauler B,  et al., 2017, Footprint-free
           82.  McCauley  HA,  Wells  JM, 2017,  Pluripotent  Stem  Cell-  Human Fetal Foreskin Derived iPSCs: A Tool for Modeling
               derived Organoids: Using Principles of Developmental   Hepatogenesis  Associated  Gene Regulatory  Networks.  Sci
               Biology to Grow Human Tissues in a Dish.  Development,   Rep, 7:310. DOI: 10.1038/s41598-017-06546-9.
               144:958–62. DOI: 10.1242/dev.140731.            95.  Atkinson MA, Eisenbarth  GS, Michels AW, 2014,  Type 1
           83.  Liu C, Oikonomopoulos A, Sayed N, et al., 2018, Modeling   Diabetes. Lancet, 383:69–82.
               Human  Diseases with  Induced  Pluripotent  Stem  Cells:   96.  Katsarou A, Gudbjörnsdottir S, Rawshani A,  et al., 2017,
               From 2D to 3D and Beyond. Development, 145:dev156166.   Type 1 Diabetes Mellitus. Nat Rev Dis Prim, 3:17016.
               DOI: 10.1242/dev.156166.                        97.  Kim J, Shim IK, Hwang DG, et al., 2019, 3D Cell Printing

           76                          International Journal of Bioprinting (2020)–Volume 6, Issue 4
   75   76   77   78   79   80   81   82   83   84   85