Page 80 - IJB-6-4
P. 80
Applications of 3D bioprinted iPSCs
Stereolithographic Fabrication of Human Adipose Stem Cell- 84. Zhang B, Gao L, Ma L, et al., 2017, 3D Bioprinting: A Novel
Incorporated Biodegradable Scaffolds for Cartilage Tissue Avenue for Manufacturing Tissues and Organs. Engineering,
Engineering. Front Bioeng Biotechnol, 3:115. DOI: 10.3389/ 5:777–94.
fbioe.2015.00115. 85. Varkey M, Visscher DO, van Zuijlen PP, et al., 2019, Skin
73. Ma X, Qu X, Zhu W, et al., 2016, Deterministically Patterned Bioprinting: The Future of Burn Wound Reconstruction?
Biomimetic Human iPSC-Derived Hepatic Model Via Burn Trauma, 7:8171. DOI: 10.1186/s41038-019-0142-7.
Rapid 3D Bioprinting. Proc Natl Acad Sci, 113:2206–11. 86. Kamel RA, Ong JF, Eriksson E, et al., 2013, Tissue
DOI: 10.1073/pnas.1524510113. Engineering of Skin. J Am Coll Surg, 217:533–55.
74. Fairbanks BD, Schwartz MP, Bowman CN, et al., 2009, 87. Yang B, Lui C, Yeung E, et al., 2019, A Net Mold-Based
Photoinitiated Polymerization of PEG-diacrylate with Method of Biomaterial-Free Three-Dimensional Cardiac
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate: Tissue Creation. Tissue Eng Part C Methods, 25:243–52.
Polymerization Rate and Cytocompatibility. Biomaterials, DOI: 10.1089/ten.tec.2019.0003.
30:6702–7. DOI: 10.1016/j.biomaterials.2009.08.055. 88. Vijayavenkataraman S, Kannan S, Cao T, et al., 2019,
75. Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization- 3D-Printed PCL/PPy Conductive Scaffolds as Three-
Based Bioprinting Process, Materials, Applications and Dimensional Porous Nerve Guide Conduits (NGCs) for
Regulatory Challenges. Biofabrication, 12:022001. Peripheral Nerve Injury Repair. Front Bioeng Biotechnol,
DOI: 410.1088/1758-5090/ab6034. 7:266. DOI: 10.3389/fbioe.2019.00266.
76. Fattah AR, Meleca E, Mishriki S, et al., 2016, In Situ 89. Chen YM, Chen LH, Li MP, et al., 2017, Xeno-free Culture
3D Label-Free Contactless Bioprinting of Cells through of Human Pluripotent Stem Cells on Oligopeptide-Grafted
Diamagnetophoresis. ACS Biomater Sci Eng, 2:2133–8. Hydrogels with Various Molecular Designs. Sci Rep, 7:45146.
DOI: 10.1021/acsbiomaterials.6b00614. DOI: 10.1038/srep45146.
77. Gudapati H, Dey M, Ozbolat I, 2016, A Comprehensive 90. Wiley LA, Anfinson KR, Cranston CM, et al., 2017,
Review on Droplet-based Bioprinting: Past, Present Generation of Xeno-Free, cGMP-Compliant Patient-Specific
and Future. Biomaterials, 102:20–42. DOI: 10.1016/j. iPSCs from Skin Biopsy. Curr Protoc Stem Cell Biol,
biomaterials.2016.06.012. 42:4A.12.1–4A.12.4. Doi: 10.1002/cpsc.30.
78. Guillotin B, Souquet A, Catros S, et al., 2010, Laser Assisted 91. Pruksananonda K, Rungsiwiwut R, 2016, Moving
Bioprinting of Engineered Tissue with High Cell Density toward xeno-free culture of human pluripotent stem
and Microscale Organization. Biomaterials, 31:7250–6. cells. In: Pluripotent Stem Cells: From the Bench to the
DOI: 10.1016/j.biomaterials.2010.05.055. Clinic. BoD-Books on Demand, Norderstedt, Germany.
79. Li Y, Jiang X, Li L, et al., 2018, 3D Printing Human Induced DOI: 10.5772/62770.
Pluripotent Stem Cells with Novel Hydroxypropyl Chitin 92. Boreström C, Simonsson S, Enochson L, et al., 2014,
Bioink: Scalable Expansion and Uniform Aggregation. Footprint-Free Human Induced Pluripotent Stem Cells From
Biofabrication, 10:044101. DOI: 10.1088/1758-5090/aacfc3. Articular Cartilage With Redifferentiation Capacity: A First
80. Ng WL, Chua CK, Shen YF, 2019, Print Me An Organ! Step Toward a Clinical-Grade Cell Source. Stem Cells Transl
Why We Are Not There Yet. Prog Polym Sci, 97:101145. Med, 3:433–47. DOI: 10.5966/sctm.2013-0138.
DOI: 10.1016/j.progpolymsci.2019.101145. 93. Attwood S, Edel M, 2019, iPS-Cell Technology and the
81. Romanazzo S, Nemec S, Roohani I, 2019, iPSC Bioprinting: Problem of Genetic Instability can it ever be Safe for Clinical
Where are we at? Materials (Basel), 12:2453. DOI: 10.3390/ Use? J Clin Med, 8:288. DOI: 10.3390/jcm8030288.
ma12152453. 94. Matz P, Wruck W, Fauler B, et al., 2017, Footprint-free
82. McCauley HA, Wells JM, 2017, Pluripotent Stem Cell- Human Fetal Foreskin Derived iPSCs: A Tool for Modeling
derived Organoids: Using Principles of Developmental Hepatogenesis Associated Gene Regulatory Networks. Sci
Biology to Grow Human Tissues in a Dish. Development, Rep, 7:310. DOI: 10.1038/s41598-017-06546-9.
144:958–62. DOI: 10.1242/dev.140731. 95. Atkinson MA, Eisenbarth GS, Michels AW, 2014, Type 1
83. Liu C, Oikonomopoulos A, Sayed N, et al., 2018, Modeling Diabetes. Lancet, 383:69–82.
Human Diseases with Induced Pluripotent Stem Cells: 96. Katsarou A, Gudbjörnsdottir S, Rawshani A, et al., 2017,
From 2D to 3D and Beyond. Development, 145:dev156166. Type 1 Diabetes Mellitus. Nat Rev Dis Prim, 3:17016.
DOI: 10.1242/dev.156166. 97. Kim J, Shim IK, Hwang DG, et al., 2019, 3D Cell Printing
76 International Journal of Bioprinting (2020)–Volume 6, Issue 4

