Page 81 - IJB-6-4
P. 81

Soman and Vijayavenkataraman
               of Islet-laden Pancreatic Tissue-derived Extracellular Matrix   Transl Res, 211:64–83. DOI: 10.1016/j.trsl.2019.04.004.
               Bioink  Constructs for Enhancing  Pancreatic  Functions.  J   110.  Zimmermann  WH,  Cesnjevar  R,  2009,  Cardiac  Tissue
               Mater Chem B, 7:1773–81. DOI: 10.1039/c8tb02787k.   Engineering: Implications for Pediatric Heart Surgery. Pediatr
           98.  Taalesen H, Ketner MA, 2018, Milestone in Development of   Cardiol, 30:716–23. DOI: 10.1007/s00246-009-9405-6.
               3D Bioprinting  of Biomimetic  Pancreas to Treat  Diabetes.   111.  Tzatzalos E, Abilez OJ, Shukla P, et al., 2016, Engineered
               University of Oslo, Hybrid Technology Hub, Oslo. Available   Heart  Tissues and  Induced  Pluripotent  Stem  Cells:  Macro
               from: https://www.med.uio.no/hth/english/news-and-events/  and Microstructures for Disease Modeling, Drug Screening,
               news/3dbioprinting.html. [Last accessed on 2020 Jun 20].  and Translational Studies. Adv Drug Deliv Rev, 96:234–44.
           99.  Davies S, 2016, Successfully 3D Print Functioning Pancreas   DOI: 10.1016/j.addr.2015.09.010.
               Model. Mag Des Innovations. Celprogen Inc., Torrance.  112.  Yoshida  Y,  Yamanaka S, 2017, Induced Pluripotent Stem
           100.  Ebrahimi M, Asbagh FA, 2011, Pathogenesis and Causes of   Cells 10 Years Later. Circ Res, 120:1958–68. DOI: 10.1161/
               Premature  Ovarian Failure: An Update.  Int J Fertil  Steril,   circresaha.117.311080.
               5:54–65.                                        113.  Hinson JT, Chopra A, Nafissi N, et al., 2015, Titin Mutations
           101.  Laronda MM, Rutz AL, Xiao S, et al., 2017, A Bioprosthetic   in iPS Cells Define Sarcomere Insufficiency as a Cause of
               Ovary  Created  Using  3D  Printed  Microporous  Scaffolds   Dilated Cardiomyopathy. Science, 349:982–6. DOI: 10.1126/
               Restores Ovarian Function in Sterilized Mice. Nat Commun,   science.aaa5458.
               8:15261. DOI: 10.1038/ncomms15261.              114.  Tiburcy M,  Hudson  JE, Balfanz P,  et al.,  2017,  Defined
           102.  Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing cell-  Engineered Human Myocardium with Advanced Maturation
               laden  gelatin  constructs by free-form fabrication  and   for  Applications  in  Heart  Failure Modeling  and  Repair.
               enzymatic protein crosslinking. Biomed Microdevices, 17:16.   Circulation, 135:1832–47.
               DOI: 10.1007/s10544-014-9915-8.                 115.  Takebe T, Zhang B, Radisic M, 2017, Synergistic Engineering:
           103.  Bulanova EA, Koudan EV, Degosserie J,  et al., 2017,   Organoids Meet Organs-on-a-Chip. Cell Stem Cell, 21:297–
               Bioprinting of a Functional Vascularized Mouse Thyroid Gland   300. DOI: 10.1016/j.stem.2017.08.016.
               Construct.  Biofabrication, 9:034105. DOI: 10.1088/1758-  116.  Bhatia SN, Ingber DE, 2014, Microfluidic Organs-on-chips.
               5090/aa7fdd.                                        Nat Biotechnol, 32:760–72. DOI: 10.1038/nbt.2989.
           104.  International Space Station Program Science Forum, 2018,   117.  Huh D, Matthews BD, Mammoto A,  et al., 2010, Ingber,
               International  Space  Station  Benefits  for  Humanity.  3  ed.   Reconstituting  Organ-level  Lung Functions on a Chip.
                                                       rd
               NASA.  Available  from: https://www.nasa.gov/sites/default/  Science, 328:1662–8. DOI: 10.1126/science.1188302.
               files/atoms/files/benefits-for-humanity_third.pdf.   [Last   118.  Low  LA,  Tagle  DA, 2017,  Tissue  Chips-innovative  Tools
               accessed on 2020 Jun 20].                           for  Drug  Development  and  Disease  Modeling.  Lab Chip,
           105.  Hamazaki T, El Rouby N, Fredette NC, et al., 2017, Concise   17:3026–36. DOI: 10.1039/c7lc00462a.
               Review: Induced Pluripotent Stem Cell Research in the Era   119.  Eiraku M,  Watanabe  K, Matsuo-Takasaki  M,  et al., 2008,
               of Precision Medicine. Stem Cells, 35:545–50. DOI: 10.1002/  Self-Organized Formation of Polarized Cortical Tissues from
               stem.2570.                                          ESCs and its Active Manipulation by Extrinsic Signals. Cell
           106.  Walker C, Mojares E, Del Río Hernández A, 2018, Role of   Stem Cell, 3:519–32. DOI: 10.1016/j.stem.2008.09.002.
               Extracellular Matrix in Development and Cancer Progression.   120.  Montine TJ, Phelps CH, Beach TG,  et al., 2012, National
               Int J Mol Sci, 19:3028. DOI: 10.3390/ijms19103028.  Institute on Aging-Alzheimer’s Association Guidelines for
           107.  Ma X, Liu J, Zhu W, et al., 2018, 3D Bioprinting of Functional   the Neuropathologic  Assessment  of  Alzheimer’s  Disease:
               Tissue Models for Personalized Drug Screening and   A  Practical  Approach.  Acta Neuropathol, 123:1–11.
               In Vitro Disease Modeling. Adv Drug Deliv Rev, 132:235–51.   DOI: 10.1007/s00401-011-0910-3.
               DOI: 10.1016/j.addr.2018.06.011.                121.  van Giau V, Lee H, Shim KH, et al., 2018, Genome-editing
           108.  Antill-O’Brien  N, Bourke  J, O’Connell  CD, 2019,  Layer-  Applications of CRISPR Cas9 to Promote In Vitro Studies of
               by-layer:  The  case  for  3D bioprinting  neurons  to  create   Alzheimer’s Disease. Clin Interv Aging, 13:221–33.
               patient-specific epilepsy models. Materials (Basel), 12:3218.   122.  De Strooper B, Karran  E,  2016,  The  Cellular  Phase of
               DOI: 10.3390/ma12193218.                            Alzheimer’s Disease.  Cell, 164:603–15. DOI: 10.1016/j.
           109.  Alonzo  M,  AnilKumar  S, Roman  B,  et  al.,  2019,  3D   cell.2015.12.056.
               Bioprinting of Cardiac Tissue and Cardiac Stem Cell Therapy.   123.  Vijayavenkataraman S, Thaharah  S,  Zhang  S,  et al., 2019,

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 4        77
   76   77   78   79   80   81   82   83   84   85   86