Page 81 - IJB-6-4
P. 81
Soman and Vijayavenkataraman
of Islet-laden Pancreatic Tissue-derived Extracellular Matrix Transl Res, 211:64–83. DOI: 10.1016/j.trsl.2019.04.004.
Bioink Constructs for Enhancing Pancreatic Functions. J 110. Zimmermann WH, Cesnjevar R, 2009, Cardiac Tissue
Mater Chem B, 7:1773–81. DOI: 10.1039/c8tb02787k. Engineering: Implications for Pediatric Heart Surgery. Pediatr
98. Taalesen H, Ketner MA, 2018, Milestone in Development of Cardiol, 30:716–23. DOI: 10.1007/s00246-009-9405-6.
3D Bioprinting of Biomimetic Pancreas to Treat Diabetes. 111. Tzatzalos E, Abilez OJ, Shukla P, et al., 2016, Engineered
University of Oslo, Hybrid Technology Hub, Oslo. Available Heart Tissues and Induced Pluripotent Stem Cells: Macro
from: https://www.med.uio.no/hth/english/news-and-events/ and Microstructures for Disease Modeling, Drug Screening,
news/3dbioprinting.html. [Last accessed on 2020 Jun 20]. and Translational Studies. Adv Drug Deliv Rev, 96:234–44.
99. Davies S, 2016, Successfully 3D Print Functioning Pancreas DOI: 10.1016/j.addr.2015.09.010.
Model. Mag Des Innovations. Celprogen Inc., Torrance. 112. Yoshida Y, Yamanaka S, 2017, Induced Pluripotent Stem
100. Ebrahimi M, Asbagh FA, 2011, Pathogenesis and Causes of Cells 10 Years Later. Circ Res, 120:1958–68. DOI: 10.1161/
Premature Ovarian Failure: An Update. Int J Fertil Steril, circresaha.117.311080.
5:54–65. 113. Hinson JT, Chopra A, Nafissi N, et al., 2015, Titin Mutations
101. Laronda MM, Rutz AL, Xiao S, et al., 2017, A Bioprosthetic in iPS Cells Define Sarcomere Insufficiency as a Cause of
Ovary Created Using 3D Printed Microporous Scaffolds Dilated Cardiomyopathy. Science, 349:982–6. DOI: 10.1126/
Restores Ovarian Function in Sterilized Mice. Nat Commun, science.aaa5458.
8:15261. DOI: 10.1038/ncomms15261. 114. Tiburcy M, Hudson JE, Balfanz P, et al., 2017, Defined
102. Irvine SA, Agrawal A, Lee BH, et al., 2015, Printing cell- Engineered Human Myocardium with Advanced Maturation
laden gelatin constructs by free-form fabrication and for Applications in Heart Failure Modeling and Repair.
enzymatic protein crosslinking. Biomed Microdevices, 17:16. Circulation, 135:1832–47.
DOI: 10.1007/s10544-014-9915-8. 115. Takebe T, Zhang B, Radisic M, 2017, Synergistic Engineering:
103. Bulanova EA, Koudan EV, Degosserie J, et al., 2017, Organoids Meet Organs-on-a-Chip. Cell Stem Cell, 21:297–
Bioprinting of a Functional Vascularized Mouse Thyroid Gland 300. DOI: 10.1016/j.stem.2017.08.016.
Construct. Biofabrication, 9:034105. DOI: 10.1088/1758- 116. Bhatia SN, Ingber DE, 2014, Microfluidic Organs-on-chips.
5090/aa7fdd. Nat Biotechnol, 32:760–72. DOI: 10.1038/nbt.2989.
104. International Space Station Program Science Forum, 2018, 117. Huh D, Matthews BD, Mammoto A, et al., 2010, Ingber,
International Space Station Benefits for Humanity. 3 ed. Reconstituting Organ-level Lung Functions on a Chip.
rd
NASA. Available from: https://www.nasa.gov/sites/default/ Science, 328:1662–8. DOI: 10.1126/science.1188302.
files/atoms/files/benefits-for-humanity_third.pdf. [Last 118. Low LA, Tagle DA, 2017, Tissue Chips-innovative Tools
accessed on 2020 Jun 20]. for Drug Development and Disease Modeling. Lab Chip,
105. Hamazaki T, El Rouby N, Fredette NC, et al., 2017, Concise 17:3026–36. DOI: 10.1039/c7lc00462a.
Review: Induced Pluripotent Stem Cell Research in the Era 119. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al., 2008,
of Precision Medicine. Stem Cells, 35:545–50. DOI: 10.1002/ Self-Organized Formation of Polarized Cortical Tissues from
stem.2570. ESCs and its Active Manipulation by Extrinsic Signals. Cell
106. Walker C, Mojares E, Del Río Hernández A, 2018, Role of Stem Cell, 3:519–32. DOI: 10.1016/j.stem.2008.09.002.
Extracellular Matrix in Development and Cancer Progression. 120. Montine TJ, Phelps CH, Beach TG, et al., 2012, National
Int J Mol Sci, 19:3028. DOI: 10.3390/ijms19103028. Institute on Aging-Alzheimer’s Association Guidelines for
107. Ma X, Liu J, Zhu W, et al., 2018, 3D Bioprinting of Functional the Neuropathologic Assessment of Alzheimer’s Disease:
Tissue Models for Personalized Drug Screening and A Practical Approach. Acta Neuropathol, 123:1–11.
In Vitro Disease Modeling. Adv Drug Deliv Rev, 132:235–51. DOI: 10.1007/s00401-011-0910-3.
DOI: 10.1016/j.addr.2018.06.011. 121. van Giau V, Lee H, Shim KH, et al., 2018, Genome-editing
108. Antill-O’Brien N, Bourke J, O’Connell CD, 2019, Layer- Applications of CRISPR Cas9 to Promote In Vitro Studies of
by-layer: The case for 3D bioprinting neurons to create Alzheimer’s Disease. Clin Interv Aging, 13:221–33.
patient-specific epilepsy models. Materials (Basel), 12:3218. 122. De Strooper B, Karran E, 2016, The Cellular Phase of
DOI: 10.3390/ma12193218. Alzheimer’s Disease. Cell, 164:603–15. DOI: 10.1016/j.
109. Alonzo M, AnilKumar S, Roman B, et al., 2019, 3D cell.2015.12.056.
Bioprinting of Cardiac Tissue and Cardiac Stem Cell Therapy. 123. Vijayavenkataraman S, Thaharah S, Zhang S, et al., 2019,
International Journal of Bioprinting (2020)–Volume 6, Issue 4 77

