Page 82 - IJB-6-4
P. 82
Applications of 3D bioprinted iPSCs
3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Med, 22:1392–401. DOI: 10.1038/nm.4238.
Nerve Injury Repair. Artif Organs, 43:515–23. DOI: 10.1111/ 136. Kotini AG, Chang CJ, Chow A, et al., 2017, Stage-Specific
aor.13360. Human Induced Pluripotent Stem Cells Map the Progression
124. Chambers SM, Fasano CA, Papapetrou EP, et al., 2009, of Myeloid Transformation to Transplantable Leukemia. Cell
Highly Efficient Neural Conversion of Human ES and iPS Stem Cell, 20:315–28. DOI: 10.1016/j.stem.2017.01.009.
Cells by Dual Inhibition of SMAD Signaling. Nat Biotechnol, 137. Hu K, Yu J, Suknuntha K, et al., 2011, Efficient Generation
27:275–80. DOI: 10.1038/nbt.1529. of Transgene-free induced Pluripotent Stem Cells from
125. Ortiz-Virumbrales M, Moreno CL, Kruglikov I, et al., 2017, Normal and Neoplastic Bone Marrow and Cord Blood
CRISPR/Cas9-Correctable Mutation-related Molecular and Mononuclear Cells. Blood, 117:e109–19. DOI: 10.1182/
Physiological Phenotypes in iPSC-Derived Alzheimer’s blood-2010-07-298331.
PSEN2N141I Neurons. Acta Neuropathol Commun, 5:77. 138. Gandre-Babbe S, Paluru P, Aribeana C, et al., 2013, Patient-
DOI: 10.1186/s40478-017-0475-z. derived Induced Pluripotent Stem Cells Recapitulate
126. Drummond E, Wisniewski T, 2017, Alzheimer’s Disease: Hematopoietic Abnormalities of Juvenile Myelomonocytic
Experimental Models and Reality. Acta Neuropathol, Leukemia. Blood, 121:4925–9. DOI: 10.1182/
133:155–75. DOI: 10.1007/s00401-016-1662-x. blood-2013-01-478412.
127. Li H, Jiang H, Zhang B, et al., 2018, Modeling Parkinson’s 139. Kotini AG, Chang CJ, Boussaad I, et al., 2015, Functional
Disease Using Patient-specific Induced Pluripotent Stem Analysis of a Chromosomal Deletion Associated with
Cells. J Parkinsons Dis, 8:479–93. Myelodysplastic Syndromes using Isogenic Human
128. Torrent R, De Angelis Rigotti F, Dell’Era P, et al., 2015, Induced Pluripotent Stem Cells. Nat Biotechnol, 33:646–55.
Using iPS Cells Toward the Understanding of Parkinson’s DOI: 10.1038/nbt.3178.
Disease. J Clin Med, 4:548–66. DOI: 10.3390/jcm4040548. 140. Fang Y, Eglen RM, 2017, Three-Dimensional Cell Cultures in
129. Zeng XS, Geng WS, Jia JJ, 2018, Neurotoxin-Induced Drug Discovery and Development. SLAS Discov, 22:456–72.
Animal Models of Parkinson Disease: Pathogenic Mechanism DOI: 10.1177/1087057117696795.
and Assessment. ASN Neuro, 10:1759091418777438. 141. Senthebane DA, Rowe A, Thomford NE, et al., 2017, The
DOI: 10.1177/1759091418777438. Role of Tumor Microenvironment in Chemoresistance: To
130. Bordoni M, Rey F, Fantini V, et al., 2018, From Neuronal Survive, Keep your Enemies Closer. Int J Mol Sci, 18:1586.
Differentiation of iPSCs to 3D Neuro-organoids: Modelling DOI: 10.3390/ijms18071586.
and Therapy of Neurodegenerative Diseases. Int J Mol Sci, 142. Abbott A, 2019, The Lowdown on Animal Testing for
19:3972. DOI: 10.3390/ijms19123972. Cosmetics. Nature, 2:496.
131. Thomas M, Willerth SM, 2017, 3-D Bioprinting of 143. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
Neural Tissue for Applications in Cell Therapy and Drug Amniotic Fluid-Derived Stem Cells Accelerate Healing of
Screening. Front Bioeng Biotechnol, 5:69. DOI: 10.3389/ Large Skin Wounds. Stem Cells Transl Med, 1:792–802.
fbioe.2017.00069. DOI: 10.5966/sctm.2012-0088./
132. Osborn TM, Beagan J, Isacson O, 2018, Increased Motor 144. Teoh JH, Thamizhchelvan AM, Davoodi P, et al., 2019,
Neuron Resilience by Small Molecule Compounds that Investigation of the Application of a Taylor-Couette Bioreactor
Regulate IGF-II Expression. Neurobiol Dis, 110:218–30. in the Post-processing of Bioprinted Human Dermal Tissue.
DOI: 10.1016/j.nbd.2017.11.002. Biochem Eng J, 151:107317. DOI: 10.1016/j.bej.2019.107317.
133. Osaki T, Uzel SG, Kamm RD, 2018, Microphysiological 3D 145. Kim BS, Lee JS, Gao G, et al., 2017, Direct 3D Cell-
Model of Amyotrophic Lateral Sclerosis (ALS) from Human printing of Human Skin with Functional Transwell System.
iPS-derived Muscle Cells and Optogenetic Motor Neurons. Biofabrication, 9:025034. DOI: 10.1088/1758-5090/aa71c8.
Sci Adv, 4:eaat5847. DOI: 10.1126/sciadv.aat5847. 146. Gentile P, McColgan-Bannon K, Gianone NC, et al., 2017,
134. Câmara DA, Mambelli LI, Porcacchia AS, et al., 2016, Biosynthetic PCL-Graft-collagen Bulk Material for Tissue
Advances and Challenges on Cancer Cells Reprogramming Engineering Applications. Materials (Basel), 10:693.
Using Induced Pluripotent Stem Cells Technologies. J DOI: 10.3390/ma10070693.
Cancer, 7:2296–303. DOI: 10.7150/jca.16629. 147. Ashammakhi N, Ahadian S, Xu C, et al., 2019, Bioinks
135. Papapetrou EP, 2016, Patient-derived Induced Pluripotent and Bioprinting Technologies to Make Heterogeneous and
Stem Cells in Cancer Research and Precision Oncology. Nat Biomimetic tissue Constructs. Mater Today Bio, 1:100008.
78 International Journal of Bioprinting (2020)–Volume 6, Issue 4

