Page 412 - IJB-10-6
P. 412
International Journal of Bioprinting 3D-printed PCL-MNP multifunctional scaffolds
inflammation post-implant and enhances function of scaffolds for bone regeneration and tumour treatment.
transplanted islets. Biomaterials. 2016;80:11-19. Compos A: Appl Sci Manuf. 2022;152:106672.
doi: 10.1016/j.biomaterials.2015.11.065 doi: 10.1016/j.compositesa.2021.106672
3. Llopis-Hernández V, Cantini M, González-García C, et al. 14. Zhang Y, Zhang Y, Yang Z, et al. Cytotoxicity effect of iron
Material-driven fibronectin assembly for high-efficiency oxide (Fe3O4)/graphene oxide (GO) nanosheets in cultured
presentation of growth factors. Sci Adv. 2016;2(8):e1600188. HBE cells. Front Chem. 2022;10:888033.
doi: 10.1126/sciadv.1600188 doi: 10.3389/fchem.2022.888033
4. Wan T, Stylios GK, Giannoudi M, Giannoudis PV. 15. Ali A, Shah T, Ullah R, et al. Review on recent progress in
Investigating a new drug delivery nano composite magnetic nanoparticles: synthesis, characterization, and
membrane system based on PVA/PCL and PVA/HA(PEG) diverse applications. Front Chem. 2021;9:629054.
for the controlled release of biopharmaceuticals for bone doi: 10.3389/fchem.2021.629054
infections. Injury. 2015;46:S39-S43. 16. Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT.
doi: 10.1016/s0020-1383(15)30053-x
Biomedical applications of biodegradable polycaprolactone-
5. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds functionalized magnetic iron oxides nanoparticles and their
for bone-tissue regeneration. Materials. 2019;12(4):568. polymer nanocomposites. Colloids Surf B Biointerfaces.
doi: 10.3390/jfb14070343 2023;227:113342.
doi: 10.1016/j.colsurfb.2023.113342
6. Dong S, Chen Y, Yu L, Lin K, Wang X. Magnetic
hyperthermia–synergistic H2O2 self-sufficient catalytic 17. Shuai C, Yang W, He C, et al. A magnetic micro-environment
suppression of osteosarcoma with enhanced bone- in scaffolds for stimulating bone regeneration. Mater Design.
regeneration bioactivity by 3D-printing composite scaffolds. 2020;185:108275.
Adv Funct Mater. 2020;30(4):1907071. doi: 10.1016/j.matdes.2019.108275
doi: 10.1002/adfm.201907071
18. Ortolani A, Bianchi M, Mosca M, et al. The prospective
7. Gu J, Liu X, Cui P, Yi X. Multifunctional bioactive opportunities offered by magnetic scaffolds for bone tissue
glasses with spontaneous degradation for simultaneous engineering: a review. Joints. 2017;4(4):228-235.
osteosarcoma therapy and bone regeneration. Biomater Adv. doi: 10.11138/jts/2016.4.4.228
2023;154:213626. 19. Gujjalapudi M, Anam C, Mamidi P, Chiluka R, Kumar AG,
doi: 10.1016/j.bioadv.2023.213626
Bibinagar R. Effect of magnetic field on bone healing around
8. Kiumarsi N, Najmoddin N. Systematically engineered GO endosseous implants - an in-vivo study. J Clin Diagn Res.
with magnetic CuFe2O4 to enhance bone regeneration on 2016;10(10):ZF01-ZF4.
3D printed PCL scaffold. Surf Interf. 2023;39:102973. doi: 10.7860/JCDR/2016/21509.8666
doi: 10.1016/j.surfin.2023.102973
20. Zhu Y, Yang Q, Yang M, et al. Protein corona of magnetic
9. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes hydroxyapatite scaffold improves cell proliferation via
PJ. Magnetic nanoparticle hyperthermia in cancer treatment. activation of mitogen-activated protein kinase signaling
Nano Life. 2010;1(1n02):10.1142/S1793984410000067. pathway. ACS Nano. 2017;11(4):3690-3704.
doi: 10.1142/S1793984410000067 doi: 10.1021/acsnano.6b08193
10. Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh 21. Wójcik-Piotrowicz K, Kaszuba-Zwoińska J, Rokita E, Thor
AR, Mohammadnejad D, Mehdipour A. A review on the P. Cell viability modulation through changes of Ca(2+)-
effect of nanocomposite scaffolds reinforced with magnetic dependent signalling pathways. Prog Biophys Mol Biol.
nanoparticles in osteogenesis and healing of bone injuries. 2016;121(1):45-53.
Stem Cell Res Ther. 2023;14(1):194. doi: 10.1016/j.pbiomolbio.2016.01.004
doi: 10.1186/s13287-023-03426-0
22. Wang Q, Chen B, Cao M, et al. Response of MAPK pathway
11. Díaz E, Valle MB, Barandiarán JM. Magnetic composite to iron oxide nanoparticles in vitro treatment promotes
scaffolds of polycaprolactone/nFeHA, for bone- osteogenic differentiation of hBMSCs. Biomaterials.
tissue engineering. Int J Polym Mater Polym Biomater. 2016;86:11-20.
2016;65(12):593-600. doi: 10.1016/j.biomaterials.2016.02.004
doi: 10.1080/00914037.2016.1149848
23. Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration
12. Cojocaru FD, Balan V, Popa MI, et al. Biopolymers - and visual monitoring via superparamagnetic iron oxide
calcium phosphates composites with inclusions of magnetic nanoparticle scaffold in rats. J Tissue Eng Regen Med.
nanoparticles for bone tissue engineering. Int J Biol 2018;12(4):e2085-e98.
Macromol. 2019;125:612-620. doi: 10.1002/term.2641
doi: 10.1016/j.ijbiomac.2018.12.083
24. Duarte A, Paola S-A, João CS, Frederico CF. 3D (bio)printing
13. Li Y, Huang L, Tai G, et al. Graphene oxide-loaded magnetic of magnetic hydrogels: formulation and applications in
nanoparticles within 3D hydrogel form high-performance tissue engineering. Int J Bioprinting. 2024;10(1):0965.
Volume 10 Issue 6 (2024) 404 doi: 10.36922/ijb.4538

