Page 412 - IJB-10-6
P. 412

International Journal of Bioprinting                             3D-printed PCL-MNP multifunctional scaffolds




               inflammation post-implant and enhances function of   scaffolds for bone regeneration and tumour treatment.
               transplanted islets. Biomaterials. 2016;80:11-19.  Compos A: Appl Sci Manuf. 2022;152:106672.
               doi: 10.1016/j.biomaterials.2015.11.065            doi: 10.1016/j.compositesa.2021.106672
            3.   Llopis-Hernández V, Cantini M, González-García C, et al.   14.  Zhang Y, Zhang Y, Yang Z, et al. Cytotoxicity effect of iron
               Material-driven  fibronectin  assembly  for high-efficiency   oxide (Fe3O4)/graphene oxide (GO) nanosheets in cultured
               presentation of growth factors. Sci Adv. 2016;2(8):e1600188.  HBE cells. Front Chem. 2022;10:888033.
               doi: 10.1126/sciadv.1600188                        doi: 10.3389/fchem.2022.888033
            4.   Wan T, Stylios  GK, Giannoudi  M, Giannoudis  PV.   15.  Ali A, Shah T, Ullah R, et al. Review on recent progress in
               Investigating  a  new  drug  delivery  nano  composite   magnetic nanoparticles: synthesis, characterization, and
               membrane system based on PVA/PCL and PVA/HA(PEG)   diverse applications. Front Chem. 2021;9:629054.
               for the controlled release of biopharmaceuticals for bone      doi: 10.3389/fchem.2021.629054
               infections. Injury. 2015;46:S39-S43.            16.  Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT.
               doi: 10.1016/s0020-1383(15)30053-x
                                                                  Biomedical applications of biodegradable polycaprolactone-
            5.   Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds   functionalized magnetic iron oxides nanoparticles and their
               for bone-tissue regeneration. Materials. 2019;12(4):568.  polymer nanocomposites.  Colloids Surf B Biointerfaces.
               doi: 10.3390/jfb14070343                           2023;227:113342.
                                                                  doi: 10.1016/j.colsurfb.2023.113342
            6.   Dong S, Chen Y, Yu L, Lin K, Wang X. Magnetic
               hyperthermia–synergistic H2O2 self-sufficient catalytic   17.  Shuai C, Yang W, He C, et al. A magnetic micro-environment
               suppression of osteosarcoma with enhanced bone-    in scaffolds for stimulating bone regeneration. Mater Design.
               regeneration bioactivity by 3D-printing composite scaffolds.   2020;185:108275.
               Adv Funct Mater. 2020;30(4):1907071.               doi: 10.1016/j.matdes.2019.108275
               doi: 10.1002/adfm.201907071
                                                               18.  Ortolani A, Bianchi M, Mosca M, et  al. The prospective
            7.   Gu J, Liu X, Cui P, Yi X. Multifunctional bioactive   opportunities offered by magnetic scaffolds for bone tissue
               glasses with spontaneous degradation for simultaneous   engineering: a review. Joints. 2017;4(4):228-235.
               osteosarcoma therapy and bone regeneration. Biomater Adv.      doi: 10.11138/jts/2016.4.4.228
               2023;154:213626.                                19.  Gujjalapudi M, Anam C, Mamidi P, Chiluka R, Kumar AG,
               doi: 10.1016/j.bioadv.2023.213626
                                                                  Bibinagar R. Effect of magnetic field on bone healing around
            8.   Kiumarsi N, Najmoddin N. Systematically engineered GO   endosseous implants - an in-vivo study. J Clin Diagn Res.
               with magnetic CuFe2O4 to enhance bone regeneration on   2016;10(10):ZF01-ZF4.
               3D printed PCL scaffold. Surf Interf. 2023;39:102973.     doi: 10.7860/JCDR/2016/21509.8666
               doi: 10.1016/j.surfin.2023.102973
                                                               20.  Zhu Y, Yang Q, Yang M, et al. Protein corona of magnetic
            9.   Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes   hydroxyapatite scaffold improves cell proliferation via
               PJ. Magnetic nanoparticle hyperthermia in cancer treatment.   activation  of  mitogen-activated  protein  kinase  signaling
               Nano Life. 2010;1(1n02):10.1142/S1793984410000067.  pathway. ACS Nano. 2017;11(4):3690-3704.
               doi: 10.1142/S1793984410000067                     doi: 10.1021/acsnano.6b08193
            10.  Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh   21.  Wójcik-Piotrowicz K, Kaszuba-Zwoińska J, Rokita E, Thor
               AR, Mohammadnejad D, Mehdipour A. A review on the   P. Cell viability modulation through changes of Ca(2+)-
               effect of nanocomposite scaffolds reinforced with magnetic   dependent signalling pathways.  Prog Biophys Mol Biol.
               nanoparticles in osteogenesis and healing of bone injuries.   2016;121(1):45-53.
               Stem Cell Res Ther. 2023;14(1):194.                doi: 10.1016/j.pbiomolbio.2016.01.004
               doi: 10.1186/s13287-023-03426-0
                                                               22.  Wang Q, Chen B, Cao M, et al. Response of MAPK pathway
            11.  Díaz E,  Valle MB, Barandiarán JM. Magnetic composite   to  iron  oxide  nanoparticles  in  vitro  treatment  promotes
               scaffolds  of  polycaprolactone/nFeHA,  for  bone-  osteogenic differentiation of hBMSCs.  Biomaterials.
               tissue engineering.  Int J Polym Mater Polym Biomater.   2016;86:11-20.
               2016;65(12):593-600.                               doi: 10.1016/j.biomaterials.2016.02.004
               doi: 10.1080/00914037.2016.1149848
                                                               23.  Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration
            12.  Cojocaru FD, Balan V, Popa MI, et  al. Biopolymers -   and visual monitoring via superparamagnetic iron oxide
               calcium phosphates composites with inclusions of magnetic   nanoparticle scaffold in rats.  J  Tissue  Eng  Regen  Med.
               nanoparticles for bone tissue engineering.  Int J Biol   2018;12(4):e2085-e98.
               Macromol. 2019;125:612-620.                        doi: 10.1002/term.2641
               doi: 10.1016/j.ijbiomac.2018.12.083
                                                               24.  Duarte A, Paola S-A, João CS, Frederico CF. 3D (bio)printing
            13.  Li Y, Huang L, Tai G, et al. Graphene oxide-loaded magnetic   of  magnetic  hydrogels:  formulation and  applications  in
               nanoparticles within 3D hydrogel form high-performance   tissue engineering. Int J Bioprinting. 2024;10(1):0965.

            Volume 10 Issue 6 (2024)                       404                                doi: 10.36922/ijb.4538
   407   408   409   410   411   412   413   414   415   416   417