Page 414 - IJB-10-6
P. 414
International Journal of Bioprinting 3D-printed PCL-MNP multifunctional scaffolds
46. Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet- 2018;8(12):3284-3307.
electrospinning of nanofibrous magnetic composite 3-D doi: 10.7150/thno.25220
scaffolds for enhanced stem cells neural differentiation.
Chem Eng Sci. 2022;264:118144. 50. Urano M, Kuroda M, Nishimura Y. For the clinical application
doi: 10.1016/j.ces.2022.118144 of thermochemotherapy given at mild temperatures.
Int J Hyperthermia. 1999;15(2):79-107.
47. Lam T, Moy A, Lee HR, Shao Q, Bischof JC, Azarin SM. doi: 10.1080/026567399285765
Iron oxide-loaded polymer scaffolds for non-invasive
hyperthermic treatment of infiltrated cells. AIChE J. 51. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and
2020;66(12):e17001. molecular basis of hyperthermia. Crit Rev Oncol Hematol.
doi: 10.1002/aic.17001 2002;43(1):33-56.
doi: 10.1016/S1040-8428(01)00179-2
48. Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS. Impact
of magnetic field parameters and iron oxide nanoparticle 52. Freeman C, Halperin EC, Brady LW, David EW. Perez
properties on heat generation for use in magnetic and Brady’s Principles and Practice of Radiation Oncology.
hyperthermia. J Magn Magn Mater. 2015;387:96-106. Philadelphia: Wolters Kluwer Health/Lippincott Williams &
doi: 10.1016/j.jmmm.2015.03.085 Wilkins; 2008: 637-644. ISBN 978-0-7817-6369-1.
49. Xie W, Guo Z, Gao F, et al. Shape-, size- and structure- 53. Chew SA, Danti S. Biomaterial-based implantable devices
controlled synthesis and biocompatibility of iron oxide for cancer therapy. Adv Healthc Mater. 2017;6(2):1600766.
nanoparticles for magnetic theranostics. Theranostics. doi: 10.1002/adhm.201600766
Volume 10 Issue 6 (2024) 406 doi: 10.36922/ijb.4538

