Page 413 - IJB-10-6
P. 413
International Journal of Bioprinting 3D-printed PCL-MNP multifunctional scaffolds
doi: 10.36922/ijb.0965 MgFe2O4 needle under an alternating magnetic field. J Surg
Res. 2008;146(1):110-116.
25. Paun IA, Popescu RC, Calin BS, Mustaciosu CC, Dinescu
M, Luculescu CR. 3D biomimetic magnetic structures for doi: 10.1016/j.jss.2007.05.022
static magnetic field stimulation of osteogenesis. Int J Mol 36. Newman D, Laredo E, Bello A, Grillo A, Feijoo JL, Müller
Sci. 2018;19(2):495. AJ. Molecular mobilities in biodegradable poly(dl-
doi: 10.3390/ijms19020495 lactide)/poly(ε-caprolactone) blends. Macromolecules.
2009;42(14):5219-5525.
26. Jia Y, Zhang P, Sun Y, et al. Regeneration of large bone defects doi: 10.1021/ma9007303
using mesoporous silica coated magnetic nanoparticles
during distraction osteogenesis. Nanomedicine. 37. Galarreta-Rodriguez I, Lopez-Ortega A, Garayo E, et al.
2019;21:102040. Magnetically activated 3D printable polylactic acid/
doi: 10.1016/j.nano.2019.102040 polycaprolactone/magnetite composites for magnetic
induction heating generation. Adv Compos Hybrid Mater.
27. Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells 2023;6:102.
stimulation by magnetic nanoparticles and a static magnetic doi: 10.1007/s42114-023-00687-4
field: release of exosomal miR-1260a improves osteogenesis
and angiogenesis. J Nanobiotechnol. 2021;19(1):209. 38. Atanasova N, Paunova-Krasteva T, Stoitsova S, et al.
doi: 10.1186/s12951-021-00958-6 Degradation of poly(ε-caprolactone) by a thermophilic
community and Brevibacillus thermoruber Strain 7 isolated
28. Jasemi A, Kamyab Moghadas B, Khandan A, Saber- from Bulgarian hot spring. Biomolecules. 2021;11(10):1488.
Samandari S. A porous calcium-zirconia scaffolds composed doi: 10.3390/biom11101488
of magnetic nanoparticles for bone cancer treatment:
fabrication, characterization and FEM analysis. Ceram Int. 39. Bin S, Wang A, Guo W, Yu L, Feng P. Micro magnetic
2022;48(1):1314-1325. field produced by Fe3O4 nanoparticles in bone scaffold
doi: 10.1016/j.ceramint.2021.09.216 for enhancing cellular activity. Polymers (Basel).
2020;12(9):2045.
29. Zhao Y, Fan T, Chen J, et al. Magnetic bioinspired micro/ doi: 10.3390/polym12092045
nanostructured composite scaffold for bone regeneration.
Colloids Surf B Biointerfaces. 2019;174:70-79. 40. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized
doi: 10.1016/j.colsurfb.2018.11.003 3D printed bone scaffolds: a review. Acta Biomater.
2023;156:110-124.
30. Zhang J, Zhao S, Zhu M, et al. 3D-printed magnetic Fe3O4/ doi: 10.1016/j.actbio.2022.04.014
MBG/PCL composite scaffolds with multifunctionality
of bone regeneration, local anticancer drug delivery and 41. Kanwar S, Vijayavenkataraman S. 3D printable bone-
hyperthermia. J Mater Chem B. 2014;2(43):7583-7595. mimicking functionally gradient stochastic scaffolds for
doi: 10.1039/C4TB01063A tissue engineering and bone implant applications. Mater
Design. 2022;223:111199.
31. Daňková J, Buzgo M, Vejpravová J, et al. Highly efficient doi: 10.1016/j.matdes.2022.111199
mesenchymal stem cell proliferation on poly-ε-caprolactone
nanofibers with embedded magnetic nanoparticles. 42. Meenarathi B, Siva P, Palanikumar S, Kannammal L,
Int J Nanomed. 2015;7(10):7307-7317. Anbarasan R. Synthesis, characterization and drug release
doi: 10.2147/ijn.s93670 activity of poly(ε-caprolactone)/Fe3O4–alizarinred
nanocomposites. Nanocomposites. 2016;2(2):98-107.
32. De Santis R, Russo A, Gloria A, et al. Towards the design doi: 10.1080/20550324.2016.1207009
of 3D fiber-deposited poly( -caprolactone)/iron-doped
hydroxyapatite nanocomposite magnetic scaffolds for bone 43. Saeed M, Beigi-Boroujeni S, Rajabi S, Ashteiani GR,
regeneration. J Biomed Nanotechnol. 2015;11(7):1236-1246. Dolatfarahi M, Özcan M. A simple, green chemistry
doi: 10.1166/jbn.2015.2065 technology for fabrication of tissue-engineered scaffolds
based on mussel-inspired 3D centrifugal spun. Mater Sci
33. Rezaei V, Mirzaei E, Taghizadeh S-M, Berenjian A, Eng C. 2021;121:111849.
Ebrahiminezhad A. Nano iron oxide-PCL composite as an doi: 10.1016/j.msec.2020.111849
improved soft tissue scaffold. Processes. 2021;9(9):1559.
doi: 10.3390/pr9091559 44. Zeng X, Meng Z, Qiu Z, He J, Fan J, Li D. Melt-based
embedded printing for freeform fabrication of overhanging
34. Cheah C, Chua C, Leong K, et al. Development of a tissue and flexible polycaprolactone scaffolds. Virtual Phys
engineering scaffold structure library for rapid prototyping. Prototype. 2023;18(1):e2209778.
Part 1: investigation and classification. Int J Adv Manuf doi: 10.1080/17452759.2023.2209778
Technol. 2003;21:291-301.
doi: 10.1007/s001700300034 45. Haag H, Dalton PD, Bloemen V. The synergy of biomimetic
design strategies for tissue constructs. Adv Funct Mater.
35. Sato K, Watanabe Y, Horiuchi A, et al. Feasibility of new 2022;32:2201414.
heating method of hepatic parenchyma using a sintered doi: 10.1002/adfm.202201414
Volume 10 Issue 6 (2024) 405 doi: 10.36922/ijb.4538

