Page 413 - IJB-10-6
P. 413

International Journal of Bioprinting                             3D-printed PCL-MNP multifunctional scaffolds




               doi: 10.36922/ijb.0965                             MgFe2O4 needle under an alternating magnetic field. J Surg
                                                                  Res. 2008;146(1):110-116.
            25.   Paun IA, Popescu RC, Calin BS, Mustaciosu CC, Dinescu
               M, Luculescu CR. 3D biomimetic magnetic structures for      doi: 10.1016/j.jss.2007.05.022
               static magnetic field stimulation of osteogenesis. Int J Mol   36.  Newman D, Laredo E, Bello A, Grillo A, Feijoo JL, Müller
               Sci. 2018;19(2):495.                               AJ. Molecular mobilities in biodegradable poly(dl-
               doi: 10.3390/ijms19020495                          lactide)/poly(ε-caprolactone)  blends.  Macromolecules.
                                                                  2009;42(14):5219-5525.
            26.  Jia Y, Zhang P, Sun Y, et al. Regeneration of large bone defects      doi: 10.1021/ma9007303
               using mesoporous silica coated magnetic nanoparticles
               during   distraction  osteogenesis.  Nanomedicine.   37.  Galarreta-Rodriguez I, Lopez-Ortega A, Garayo E, et  al.
               2019;21:102040.                                    Magnetically activated 3D printable polylactic acid/
               doi: 10.1016/j.nano.2019.102040                    polycaprolactone/magnetite composites for magnetic
                                                                  induction heating generation.  Adv Compos Hybrid Mater.
            27.  Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells   2023;6:102.
               stimulation by magnetic nanoparticles and a static magnetic      doi: 10.1007/s42114-023-00687-4
               field: release of exosomal miR-1260a improves osteogenesis
               and angiogenesis. J Nanobiotechnol. 2021;19(1):209.  38.  Atanasova N, Paunova-Krasteva T, Stoitsova S, et  al.
               doi: 10.1186/s12951-021-00958-6                    Degradation of poly(ε-caprolactone) by a thermophilic
                                                                  community and Brevibacillus thermoruber Strain 7 isolated
            28.  Jasemi A, Kamyab Moghadas B, Khandan A, Saber-   from Bulgarian hot spring. Biomolecules. 2021;11(10):1488.
               Samandari S. A porous calcium-zirconia scaffolds composed      doi: 10.3390/biom11101488
               of magnetic nanoparticles for bone cancer treatment:
               fabrication, characterization and FEM analysis. Ceram Int.   39.  Bin S, Wang A, Guo W, Yu L, Feng P. Micro magnetic
               2022;48(1):1314-1325.                              field produced by Fe3O4 nanoparticles in bone scaffold
               doi: 10.1016/j.ceramint.2021.09.216                for enhancing cellular activity.  Polymers (Basel).
                                                                  2020;12(9):2045.
            29.  Zhao Y, Fan T, Chen J, et al. Magnetic bioinspired micro/     doi: 10.3390/polym12092045
               nanostructured composite scaffold for bone regeneration.
               Colloids Surf B Biointerfaces. 2019;174:70-79.  40.  Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized
               doi: 10.1016/j.colsurfb.2018.11.003                3D printed bone scaffolds: a review.  Acta Biomater.
                                                                  2023;156:110-124.
            30.  Zhang J, Zhao S, Zhu M, et al. 3D-printed magnetic Fe3O4/     doi: 10.1016/j.actbio.2022.04.014
               MBG/PCL  composite scaffolds with multifunctionality
               of bone regeneration, local anticancer drug delivery and   41.  Kanwar S, Vijayavenkataraman S. 3D printable bone-
               hyperthermia. J Mater Chem B. 2014;2(43):7583-7595.  mimicking functionally gradient stochastic scaffolds for
               doi: 10.1039/C4TB01063A                            tissue engineering and bone implant applications.  Mater
                                                                  Design. 2022;223:111199.
            31.  Daňková J, Buzgo M, Vejpravová J, et  al. Highly efficient      doi: 10.1016/j.matdes.2022.111199
               mesenchymal stem cell proliferation on poly-ε-caprolactone
               nanofibers with embedded magnetic nanoparticles.    42.  Meenarathi B, Siva P, Palanikumar S, Kannammal L,
               Int J Nanomed. 2015;7(10):7307-7317.               Anbarasan R. Synthesis, characterization and drug release
               doi: 10.2147/ijn.s93670                            activity  of  poly(ε-caprolactone)/Fe3O4–alizarinred
                                                                  nanocomposites. Nanocomposites. 2016;2(2):98-107.
            32.  De Santis R, Russo A, Gloria A, et al. Towards the design      doi: 10.1080/20550324.2016.1207009
               of  3D fiber-deposited poly(  -caprolactone)/iron-doped
               hydroxyapatite nanocomposite magnetic scaffolds for bone   43.  Saeed M, Beigi-Boroujeni S, Rajabi S, Ashteiani GR,
               regeneration. J Biomed Nanotechnol. 2015;11(7):1236-1246.  Dolatfarahi M, Özcan M. A simple, green chemistry
               doi: 10.1166/jbn.2015.2065                         technology for fabrication of tissue-engineered scaffolds
                                                                  based on  mussel-inspired 3D  centrifugal  spun.  Mater Sci
            33.  Rezaei V, Mirzaei E, Taghizadeh S-M, Berenjian A,   Eng C. 2021;121:111849.
               Ebrahiminezhad A. Nano iron oxide-PCL composite as an      doi: 10.1016/j.msec.2020.111849
               improved soft tissue scaffold. Processes. 2021;9(9):1559.
               doi: 10.3390/pr9091559                          44.  Zeng X, Meng Z, Qiu Z, He J, Fan J, Li D. Melt-based
                                                                  embedded printing for freeform fabrication of overhanging
            34.  Cheah C, Chua C, Leong K, et al. Development of a tissue   and flexible polycaprolactone scaffolds.  Virtual Phys
               engineering scaffold structure library for rapid prototyping.   Prototype. 2023;18(1):e2209778.
               Part 1: investigation and classification.  Int  J Adv  Manuf      doi: 10.1080/17452759.2023.2209778
               Technol. 2003;21:291-301.
               doi: 10.1007/s001700300034                      45.  Haag H, Dalton PD, Bloemen V. The synergy of biomimetic
                                                                  design strategies for tissue constructs.  Adv Funct Mater.
            35.  Sato K, Watanabe Y, Horiuchi A, et  al. Feasibility of new   2022;32:2201414.
               heating method of hepatic parenchyma using a sintered      doi: 10.1002/adfm.202201414


            Volume 10 Issue 6 (2024)                       405                                doi: 10.36922/ijb.4538
   408   409   410   411   412   413   414   415   416   417   418