Page 463 - IJB-10-6
P. 463
International Journal of Bioprinting 3D-printed scaffold for biomolecule delivery
17. Won JE, Yun YR, Jang JH, et al. Multifunctional and doi: 10.3390/polym3010571
stable bone mimic proteinaceous matrix for bone tissue 29. Bryans TR, Brawner VL, Quitevis EL. Microstructure and
engineering. Biomaterials. 2015;56:46-57. porosity of silica xerogel monoliths prepared by the fast sol-
doi: 10.1016/j.biomaterials.2015.03.022
gel method. J Sol-Gel Sci Techn. 2000;17(3):211-217.
18. Lee SJ, Won JE, Han C, et al. Development of a three- doi: 10.1023/A:1008711921746
dimensionally printed scaffold grafted with bone forming
peptide-1 for enhanced bone regeneration with in vitro and 30. Czarnobaj K. Preparation and characterization of silica
in vivo evaluations. J Colloid Interface Sci. 2019;539:468-480. xerogels as carriers for drugs. Drug Deliv. 2008;15(8):485-492.
doi: 10.1016/j.jcis.2018.12.097 doi: 10.1080/10717540802321495
19. Heller M, Bauer HK, Goetze E, et al. Applications of 31. Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo
patient-specific 3D printing in medicine. Int J Comput Dent. A, Kiesvaara J. Silica xerogel as an implantable carrier for
2016;19(4):323-339. controlled drug delivery – evaluation of drug distribution
and tissue effects after implantation. Biomaterials.
20. Laubach M, Suresh S, Herath B, et al. Clinical translation of 2000;21(2):193-198.
a patient-specific scaffold-guided bone regeneration concept doi: 10.1016/S0142-9612(99)00148-9
in four cases with large long bone defects. J Orthop Translat.
2022;34:73-84. 32. Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-
doi: 10.1016/j.jot.2022.04.004 Urpo A. Silica xerogel carrier material for controlled
release of toremifene citrate. Int J Pharm. 2000;195(1-2):
21. Han HH, Shim JH, Lee H, et al. Reconstruction of complex 219-227.
maxillary defects using patient-specific 3D-printed doi: 10.1016/s0378-5173(99)00403-2
biodegradable scaffolds. Plast Reconstr Surg Glob Open.
2018;6(11):e1975. 33. Munusamy P, Seleem MN, Alqublan H, Tyler R,
doi: 10.1097/GOX.0000000000001975 Sriranganathan N, Pickrell G. Targeted drug delivery using
silica xerogel systems to treat diseases due to intracellular
22. Hernandez I, Kumar A, Joddar B. A bioactive hydrogel pathogens. Mat Sci Eng C-Mater. 2009;29(8):2313-2318.
and 3D printed polycaprolactone system for bone tissue doi: 10.1016/j.msec.2009.05.020
engineering. Gels. 2017;3(3):26-38.
doi: 10.3390/gels3030026 34. Simovic S, Ghouchi-Eskandar N, Sinn AM, Losic D,
Prestidge CA. Silica materials in drug delivery applications.
23. Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K. Feasibility of
polycaprolactone scaffolds fabricated by three-dimensional Curr Drug Discov Technol. 2011;8(3):269-276.
printing for tissue engineering of tunica albuginea. World J doi: 10.2174/157016311796799026
Mens Health. 2018;36(1):66-72. 35. Xue JM, Tan CH, Lukito D. Biodegradable polymer-silica
doi: 10.5534/wjmh.17025 xerogel composite microspheres for controlled release
24. Khandaker M, Riahinezhad S, Sultana F, Morris T, of gentamicin. J Biomed Mater Res B Appl Biomater.
Wolf R, Vaughan M. Effect of collagen-polycaprolactone 2006;78(2):417-422.
nanofibers matrix coating on the in vitro cytocompatibility doi: 10.1002/jbm.b.30503
and in vivo bone responses of titanium. J Med Biol Eng. 36. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH.
2018;38(2):197-210. Membrane of hybrid chitosan-silica xerogel for guided bone
doi: 10.1007/s40846-017-0312-7 regeneration. Biomaterials. 2009;30(5):743-750.
25. Burton TP, Corcoran A, Callanan A. The effect of electrospun doi: 10.1016/j.biomaterials.2008.10.025
polycaprolactone scaffold morphology on human kidney 37. Mahony O, Tsigkou O, Ionescu C, et al. Silica-gelatin
epithelial cells. Biomed Mater. 2017;13(1):015006. hybrids with tailorable degradation and mechanical
doi: 10.1088/1748-605X/aa8dde properties for tissue regeneration. Adv Funct Mater.
26. Won JE, Mateos-Timoneda MA, Castano O, et al. Fibronectin 2010;20(22):3835-3845.
immobilization on to robotic-dispensed nanobioactive doi: 10.1002/adfm.201000838
glass/polycaprolactone scaffolds for bone tissue engineering. 38. Kim HW, Knowles JC, Kim HE. Hydroxyapatite and gelatin
Biotechnol Lett. 2015;37(4):935-942. composite foams processed via novel freeze-drying and
doi: 10.1007/s10529-014-1745-5 crosslinking for use as temporary hard tissue scaffolds.
27. Dorj B, Won JE, Purevdorj O, et al. A novel therapeutic design J Biomed Mater Res A. 2005;72(2):136-145.
of microporous-structured biopolymer scaffolds for drug doi: 10.1002/jbm.a.30168
loading and delivery. Acta Biomater. 2014;10(3):1238-1250. 39. Carpena NT, Min YK, Lee BT. Improved in vitro
doi: 10.1016/j.actbio.2013.11.002 biocompatibility of surface-modified hydroxyapatite sponge
28. Kirby GTS, White LJ, Rahman CV, et al. PLGA-based scaffold with gelatin and BMP-2 in comparison against a
microparticles for the sustained release of BMP-2. Polymers- commercial bone allograft. ASAIO J. 2015;61(1):78-86.
Basel. 2011;3(1):571-586. doi: 10.1097/MAT.0000000000000155
Volume 10 Issue 6 (2024) 455 doi: 10.36922/ijb.4638

