Page 463 - IJB-10-6
P. 463

International Journal of Bioprinting                               3D-printed scaffold for biomolecule delivery




            17.  Won JE,  Yun YR, Jang  JH, et  al. Multifunctional and      doi: 10.3390/polym3010571
               stable bone mimic proteinaceous matrix for bone tissue   29.  Bryans TR, Brawner VL, Quitevis EL. Microstructure and
               engineering. Biomaterials. 2015;56:46-57.          porosity of silica xerogel monoliths prepared by the fast sol-
               doi: 10.1016/j.biomaterials.2015.03.022
                                                                  gel method. J Sol-Gel Sci Techn. 2000;17(3):211-217.
            18.  Lee SJ, Won JE, Han C, et al. Development of a three-     doi: 10.1023/A:1008711921746
               dimensionally printed scaffold grafted with bone forming
               peptide-1 for enhanced bone regeneration with in vitro and   30.  Czarnobaj K. Preparation and characterization of silica
               in vivo evaluations. J Colloid Interface Sci. 2019;539:468-480.  xerogels as carriers for drugs. Drug Deliv. 2008;15(8):485-492.
               doi: 10.1016/j.jcis.2018.12.097                    doi: 10.1080/10717540802321495
            19.  Heller  M,  Bauer  HK,  Goetze  E,  et  al.  Applications  of   31.  Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo
               patient-specific 3D printing in medicine. Int J Comput Dent.   A, Kiesvaara J. Silica xerogel as an implantable carrier for
               2016;19(4):323-339.                                controlled drug delivery – evaluation of drug distribution
                                                                  and tissue effects after implantation.  Biomaterials.
            20.  Laubach M, Suresh S, Herath B, et al. Clinical translation of   2000;21(2):193-198.
               a patient-specific scaffold-guided bone regeneration concept      doi: 10.1016/S0142-9612(99)00148-9
               in four cases with large long bone defects. J Orthop Translat.
               2022;34:73-84.                                  32.  Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-
               doi: 10.1016/j.jot.2022.04.004                     Urpo A. Silica xerogel carrier material for controlled
                                                                  release of toremifene citrate.  Int J Pharm. 2000;195(1-2):
            21.  Han HH, Shim JH, Lee H, et al. Reconstruction of complex   219-227.
               maxillary defects using patient-specific 3D-printed      doi: 10.1016/s0378-5173(99)00403-2
               biodegradable scaffolds.  Plast Reconstr Surg  Glob Open.
               2018;6(11):e1975.                               33.  Munusamy  P,  Seleem  MN,  Alqublan  H,  Tyler  R,
               doi: 10.1097/GOX.0000000000001975                  Sriranganathan N, Pickrell G. Targeted drug delivery using
                                                                  silica xerogel systems to treat diseases due to intracellular
            22.  Hernandez I, Kumar A, Joddar B. A bioactive hydrogel   pathogens. Mat Sci Eng C-Mater. 2009;29(8):2313-2318.
               and 3D printed polycaprolactone system for bone tissue      doi: 10.1016/j.msec.2009.05.020
               engineering. Gels. 2017;3(3):26-38.
               doi: 10.3390/gels3030026                        34.  Simovic  S, Ghouchi-Eskandar  N, Sinn AM,  Losic D,
                                                                  Prestidge CA. Silica materials in drug delivery applications.
            23.  Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K. Feasibility of
               polycaprolactone scaffolds fabricated by three-dimensional   Curr Drug Discov Technol. 2011;8(3):269-276.
               printing for tissue engineering of tunica albuginea. World J      doi: 10.2174/157016311796799026
               Mens Health. 2018;36(1):66-72.                  35.  Xue JM, Tan CH, Lukito D. Biodegradable polymer-silica
               doi: 10.5534/wjmh.17025                            xerogel composite microspheres for controlled release
            24.  Khandaker M, Riahinezhad S, Sultana F, Morris T,    of gentamicin.  J  Biomed  Mater  Res  B  Appl  Biomater.
               Wolf R, Vaughan M. Effect of collagen-polycaprolactone   2006;78(2):417-422.
               nanofibers matrix coating on the in vitro cytocompatibility      doi: 10.1002/jbm.b.30503
               and  in vivo bone responses of titanium.  J Med Biol Eng.   36.  Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH.
               2018;38(2):197-210.                                Membrane of hybrid chitosan-silica xerogel for guided bone
               doi: 10.1007/s40846-017-0312-7                     regeneration. Biomaterials. 2009;30(5):743-750.
            25.  Burton TP, Corcoran A, Callanan A. The effect of electrospun      doi: 10.1016/j.biomaterials.2008.10.025
               polycaprolactone scaffold morphology on human kidney   37.  Mahony  O,  Tsigkou  O,  Ionescu  C,  et  al.  Silica-gelatin
               epithelial cells. Biomed Mater. 2017;13(1):015006.  hybrids with tailorable degradation and mechanical
               doi: 10.1088/1748-605X/aa8dde                      properties for tissue regeneration.  Adv Funct Mater.
            26.  Won JE, Mateos-Timoneda MA, Castano O, et al. Fibronectin   2010;20(22):3835-3845.
               immobilization on to robotic-dispensed nanobioactive      doi: 10.1002/adfm.201000838
               glass/polycaprolactone scaffolds for bone tissue engineering.   38.  Kim HW, Knowles JC, Kim HE. Hydroxyapatite and gelatin
               Biotechnol Lett. 2015;37(4):935-942.               composite  foams processed  via  novel  freeze-drying  and
               doi: 10.1007/s10529-014-1745-5                     crosslinking for use as temporary hard tissue scaffolds.
            27.  Dorj B, Won JE, Purevdorj O, et al. A novel therapeutic design   J Biomed Mater Res A. 2005;72(2):136-145.
               of microporous-structured biopolymer scaffolds for drug      doi: 10.1002/jbm.a.30168
               loading and delivery. Acta Biomater. 2014;10(3):1238-1250.  39.  Carpena NT, Min YK, Lee BT. Improved  in vitro
               doi: 10.1016/j.actbio.2013.11.002                  biocompatibility of surface-modified hydroxyapatite sponge
            28.  Kirby GTS, White LJ, Rahman CV, et al. PLGA-based   scaffold with gelatin and BMP-2 in comparison against a
               microparticles for the sustained release of BMP-2. Polymers-  commercial bone allograft. ASAIO J. 2015;61(1):78-86.
               Basel. 2011;3(1):571-586.                          doi: 10.1097/MAT.0000000000000155

            Volume 10 Issue 6 (2024)                       455                                doi: 10.36922/ijb.4638
   458   459   460   461   462   463   464   465   466   467   468