Page 588 - IJB-10-6
P. 588
International Journal of Bioprinting Biomechanical analysis of mandibular implants
doi: 10.1016/j.oraloncology.2018.07.004 16. Cheng KJ, Liu YF, Wang R, et al. Topological optimization
of 3D printed bone analog with PEKK for surgical
5. Baltatu MS, Tugui CA, Perju MC, et al. Biocompatible
titanium alloys used in medical applications. Rev Chim. mandibular reconstruction. J Mech Behav Biomed Mater.
2019;70(4):1302-1306. 2020;107:103758.
doi: 10.37358/RC.19.4.7114 doi: 10.1016/j.jmbbm.2020.103758
17. Qassemyar Q, Assouly N, Temam S, Kolb F. Use of a three-
6. Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed
porous Ti6Al4V implants with different pore sizes. dimensional custom-made porous titanium prosthesis for
J Mech Behav Biomed Mater. 2018;84:1-11. mandibular body reconstruction. Int J Oral Maxillofac Surg.
doi: 10.1016/j.jmbbm.2018.04.010 2017;46(10):1248-1251.
doi: 10.1016/j.ijom.2017.06.001
7. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
pore size on bone ingrowth into porous titanium implants 18. Ardila CM, Hernández-Arenas Y, Álvarez-Martínez
fabricated by additive manufacturing: An in vivo experiment. E. Mandibular body reconstruction utilizing a three-
Mater Sci Eng C Mater Biol Appl. 2016;59:690-701. dimensional custom-made porous titanium plate: a
doi: 10.1016/j.msec.2015.10.069 four-year follow-up clinical report. Case Rep Dent. 2022;
2022:5702066.
8. Eshkalak SK, Ghomi ER, Dai Y, Choudhury D, Ramakrishna doi: 10.1155/2022/5702066
S. The role of three-dimensional printing in healthcare and
medicine. Mater Des. 2020;194:108940. 19. Park JH, Odkhuu M, Cho S, Li J, Park BY, Kim JW.
doi: 10.1016/j.matdes.2020.108940 3D-printed titanium implant with pre-mounted dental
implants for mandible reconstruction: a case report.
9. Gao H, Li X, Wang C, Ji P, Wang C. Mechanobiologically Maxillofac Plast Reconstr Surg. 2020;42(1):28.
optimization of a 3D titanium-mesh implant for doi: 10.1186/s40902-020-00272-5
mandibular large defect: a simulated study. Mater Sci Eng C
Mater Biol Appl. 2019;104:109934. 20. Raz K, Chval Z, Sedlacek F. Compressive strength prediction
doi: 10.1016/j.msec.2019.109934 of quad-diametral lattice structures. Key Eng Mater.
2020;847:69-74.
10. Hosseini S, Hudak R, Penhaker M, Majernik J. Fatigue of Ti- doi: 10.4028/www.scientific.net/KEM.847.69
6Al-4V. In: Biomedical Engineering-Technical Applications in
Medicine. London, UK: IntechOpen; 2012:75-92. 21. Kim JW, Oh CW, Kim BS, Jeong SL, Jung GH, Lee
doi: 10.5772/45753 DH. Structure-mechanical analysis of various fixation
constructs for basicervical fractures of the proximal
11. Davoodi E, Montazerian H, Esmaeilizadeh R, et al. femur and clinical implications; finite element analysis.
Additively manufactured gradient porous Ti-6Al-4V hip Injury. 2023;54(2):370-378.
replacement implants embedded with cell-laden gelatin doi: 10.1016/j.injury.2022.12.004
methacryloyl hydrogels. ACS Appl Mater Interfaces.
2021;13(19):22110-22123. 22. Huang HL, Lin TW, Tsai HL, Wu YL, Wu AYJ. Biomechanical
doi: 10.1021/acsami.0c20751 effects of bone atrophy, implant design, and vertical or tilted
of posterior implant on all-on-four concept implantation:
12. Farajpour H, Bastami F, Bohlouli M, Khojasteh A. finite element analysis. J Med Biol Eng. 2022;42(4):488-497.
Reconstruction of bilateral ramus-condyle unit defect doi: 10.1007/s40846-022-00725-4
using custom titanium prosthesis with preservation of both
condyles. J Mech Behav Biomed Mater. 2021;124:104765. 23. Grant JA, Bishop NE, Götzen N, Sprecher C, Honl M,
doi: 10.1016/j.jmbbm.2021.104765 Morlock MM. Artificial composite bone as a model of
human trabecular bone: the implant-bone interface.
13. Luo D, Rong Q, Chen Q. Finite-element design and J Biomech. 2007;40(5):1158-1164.
optimization of a three-dimensional tetrahedral porous doi: 10.1016/j.jbiomech.2006.04.007
titanium scaffold for the reconstruction of mandibular
defects. Med Eng Phys. 2017;47:176-183. 24. Bozkaya D, Müftü S. Mechanics of the taper integrated
doi: 10.1016/j.medengphy.2017.06.015 screwed-in (TIS) abutments used in dental implants.
J Biomech. 2005;38(1):87-97.
14. Liu R, Su Y, Yang W, et al. Novel design and optimization doi: 10.1016/j.jbiomech.2004.03.006
of porous titanium structure for mandibular reconstruction.
Appl Bionics Biomech. 2022;2022:8686670. 25. Huang HL, Su KC, Fuh LJ, et al. Biomechanical analysis
doi: 10.1155/2022/8686670 of a temporomandibular joint condylar prosthesis
during various clenching tasks. J Craniomaxillofac Surg.
15. Touré G, Gouet E. Use of a 3-dimensional custom- 2015;43(7):1194-1201.
made porous titanium prosthesis for mandibular body
reconstruction with prosthetic dental rehabilitation and doi: 10.1016/j.jcms.2015.04.016
lipofilling. J Oral Maxillofac Surg. 2019;77(6):1305-1313. 26. Korioth TW, Hannam AG. Mandibular forces during
doi: 10.1016/j.joms.2018.12.026 simulated tooth clenching. J Orofac Pain. 1994;8(2):178-189.
Volume 10 Issue 6 (2024) 580 doi: 10.36922/ijb.3943

