Page 588 - IJB-10-6
P. 588

International Journal of Bioprinting                            Biomechanical analysis of mandibular implants




               doi: 10.1016/j.oraloncology.2018.07.004         16.  Cheng KJ, Liu YF, Wang R, et al. Topological optimization
                                                                  of 3D printed bone analog with PEKK for surgical
            5.   Baltatu MS, Tugui CA, Perju MC, et al. Biocompatible
               titanium alloys used in medical applications.  Rev Chim.   mandibular reconstruction.  J Mech Behav Biomed Mater.
               2019;70(4):1302-1306.                              2020;107:103758.
               doi: 10.37358/RC.19.4.7114                         doi: 10.1016/j.jmbbm.2020.103758
                                                               17.  Qassemyar Q, Assouly N, Temam S, Kolb F. Use of a three-
            6.   Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed
               porous Ti6Al4V implants with different pore sizes.    dimensional custom-made porous titanium prosthesis for
               J Mech Behav Biomed Mater. 2018;84:1-11.           mandibular body reconstruction. Int J Oral Maxillofac Surg.
               doi: 10.1016/j.jmbbm.2018.04.010                   2017;46(10):1248-1251.
                                                                  doi: 10.1016/j.ijom.2017.06.001
            7.   Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of
               pore size on bone ingrowth into porous titanium implants   18.  Ardila CM, Hernández-Arenas Y, Álvarez-Martínez
               fabricated by additive manufacturing: An in vivo experiment.   E. Mandibular body reconstruction utilizing a three-
               Mater Sci Eng C Mater Biol Appl. 2016;59:690-701.  dimensional custom-made porous titanium plate: a
               doi: 10.1016/j.msec.2015.10.069                    four-year follow-up clinical report.  Case Rep Dent. 2022;
                                                                  2022:5702066.
            8.   Eshkalak SK, Ghomi ER, Dai Y, Choudhury D, Ramakrishna      doi: 10.1155/2022/5702066
               S. The role of three-dimensional printing in healthcare and
               medicine. Mater Des. 2020;194:108940.           19.  Park  JH, Odkhuu M,  Cho S,  Li  J,  Park  BY, Kim  JW.
               doi: 10.1016/j.matdes.2020.108940                  3D-printed titanium implant with pre-mounted dental
                                                                  implants for mandible reconstruction: a case report. 
            9.   Gao H, Li X, Wang C, Ji P, Wang C. Mechanobiologically   Maxillofac Plast Reconstr Surg. 2020;42(1):28.
               optimization of a 3D titanium-mesh implant for      doi: 10.1186/s40902-020-00272-5
               mandibular large defect: a simulated study. Mater Sci Eng C
               Mater Biol Appl. 2019;104:109934.               20.  Raz K, Chval Z, Sedlacek F. Compressive strength prediction
               doi: 10.1016/j.msec.2019.109934                    of quad-diametral lattice structures.  Key Eng Mater.
                                                                  2020;847:69-74.
            10.  Hosseini S, Hudak R, Penhaker M, Majernik J. Fatigue of Ti-     doi: 10.4028/www.scientific.net/KEM.847.69
               6Al-4V. In: Biomedical Engineering-Technical Applications in
               Medicine. London, UK: IntechOpen; 2012:75-92.   21.  Kim  JW,  Oh  CW,  Kim  BS,  Jeong  SL,  Jung  GH,  Lee
               doi: 10.5772/45753                                 DH. Structure-mechanical analysis of various fixation
                                                                  constructs for basicervical fractures of the proximal
            11.  Davoodi  E,  Montazerian  H,  Esmaeilizadeh  R,  et  al.   femur and clinical implications; finite element analysis. 
               Additively manufactured gradient porous Ti-6Al-4V hip   Injury. 2023;54(2):370-378.
               replacement implants embedded with cell-laden gelatin      doi: 10.1016/j.injury.2022.12.004
               methacryloyl  hydrogels.  ACS Appl Mater Interfaces.
               2021;13(19):22110-22123.                        22.  Huang HL, Lin TW, Tsai HL, Wu YL, Wu AYJ. Biomechanical
               doi: 10.1021/acsami.0c20751                        effects of bone atrophy, implant design, and vertical or tilted
                                                                  of posterior implant on all-on-four concept implantation:
            12.  Farajpour H, Bastami F, Bohlouli M, Khojasteh A.   finite element analysis. J Med Biol Eng. 2022;42(4):488-497.
               Reconstruction  of  bilateral  ramus-condyle  unit  defect      doi: 10.1007/s40846-022-00725-4
               using custom titanium prosthesis with preservation of both
               condyles. J Mech Behav Biomed Mater. 2021;124:104765.  23.  Grant JA, Bishop NE, Götzen N, Sprecher C, Honl M,
               doi: 10.1016/j.jmbbm.2021.104765                   Morlock MM. Artificial composite bone as a model of
                                                                  human trabecular bone: the implant-bone interface.
            13.  Luo D, Rong Q, Chen Q. Finite-element design and   J Biomech. 2007;40(5):1158-1164.
               optimization of a three-dimensional tetrahedral porous      doi: 10.1016/j.jbiomech.2006.04.007
               titanium scaffold for the reconstruction of mandibular
               defects. Med Eng Phys. 2017;47:176-183.         24.  Bozkaya D, Müftü S. Mechanics of the taper integrated
               doi: 10.1016/j.medengphy.2017.06.015               screwed-in (TIS) abutments used in dental implants.
                                                                  J Biomech. 2005;38(1):87-97.
            14.  Liu R, Su Y, Yang W, et al. Novel design and optimization      doi: 10.1016/j.jbiomech.2004.03.006
               of porous titanium structure for mandibular reconstruction.
               Appl Bionics Biomech. 2022;2022:8686670.        25.  Huang  HL, Su  KC, Fuh  LJ, et  al. Biomechanical  analysis
               doi: 10.1155/2022/8686670                          of a temporomandibular joint condylar prosthesis
                                                                  during various clenching tasks.  J  Craniomaxillofac  Surg.
            15.  Touré G, Gouet E. Use of a 3-dimensional custom-  2015;43(7):1194-1201.
               made porous titanium prosthesis for mandibular body
               reconstruction with prosthetic dental rehabilitation and      doi: 10.1016/j.jcms.2015.04.016
               lipofilling. J Oral Maxillofac Surg. 2019;77(6):1305-1313.  26.  Korioth TW, Hannam AG. Mandibular forces during
               doi: 10.1016/j.joms.2018.12.026                    simulated tooth clenching. J Orofac Pain. 1994;8(2):178-189.

            Volume 10 Issue 6 (2024)                       580                                doi: 10.36922/ijb.3943
   583   584   585   586   587   588   589   590   591   592