Page 22 - IJB-7-1
P. 22

Composite Bioprinting for Bio-fabrication
           33.  Akentjew  TL,  Terraza  C,  Suazo  C,  et  al.,  2019,  Rapid      https://doi.org/10.1016/j.msec.2018.06.071
               Fabrication  of  Reinforced  and  Cell-laden  Vascular  Grafts   43.  De Ruijter M, Ribeiro A, Dokter I, et al., 2019, Simultaneous
               Structurally Inspired by Human Coronary Arteries [J]. Nat   Micropatterning  of  Fibrous  Meshes  and  Bioinks  for  the
               Commun, 10(1):3098.                                 Fabrication  of  Living  Tissue  Constructs  [J].  Adv Healthc
               https://doi.org/10.1038/s41467-019-11446-9          Mater, 8(7):1800418.
           34.  Jungst T, Pennings I, Schmitz M, et al., 2019, Heterotypic      https://doi.org/10.1002/adhm.201800418
               Scaffold Design Orchestrates Primary Cell Organization and   44.  Rajzer  I,  Kurowska A,  Jabłoński A,  et al.,  2018,  Layered
               Phenotypes  in  Cocultured  Small  Diameter  Vascular  Grafts   Gelatin/PLLA Scaffolds Fabricated by Electrospinning and
               [J]. Adv Funct Mater, 29(43):1905987.               3D  Printing  for  Nasal  Cartilages  and  Subchondral  Bone
               https://doi.org/10.1002/adfm.201905987              Reconstruction [J]. Mater Des, 155:297–306.
           35.  Wang K, Zheng W, Pan Y, et al., 2016, Three-Layered PCL      https://doi.org/10.1016/j.matdes.2018.06.012
               Grafts Promoted Vascular Regeneration in a Rabbit Carotid   45.  Diloksumpan  P,  De  Ruijter  M,  Castilho  M,  et al.,  2020,
               Artery Model [J]. Macromol Biosci, 16(4):608–18.    Combining Multi-scale 3D Printing Technologies to Engineer
               https://doi.org/10.1002/mabi.201500355              Reinforced Hydrogel-ceramic Interfaces [J]. Biofabrication,
           36.  Liu Y, Xiang K, Chen H, et al., 2015, Composite Vascular   12(2):025014.
               Repair Grafts via Micro-imprinting and Electrospinning [J].      https://doi.org/10.1088/1758-5090/ab69d9
               AIP Adv, 5(4):041318.                           46.  Park JA, Lee HR, Park SY, et al., 2020, Self-Organization of
               https://doi.org/10.1063/1.4906571                   Fibroblast-Laden 3D Collagen Microstructures from Inkjet-
           37.  Wu P, Wang L, Li W, et al., 2020, Construction of Vascular   Printed Cell Patterns [J]. Adv Biosyst, 4(5):1900280.
               Graft  with  Circumferentially  Oriented  Microchannels      https://doi.org/10.1002/adbi.201900280
               for  Improving  Artery  Regeneration  [J].  Biomaterials,   47.  Kérourédan  O,  Bourget  JM,  Rémy  M,  et al.,  2019,
               242:119922.                                         Micropatterning of Endothelial Cells to Create a Capillary-
               https://doi.org/10.1016/j.biomaterials.2020.119922  like  Network  with  Defined  Architecture  by  Laser-assisted
           38.  Lee SJ, Kim ME, Nah H, et al., 2019, Vascular Endothelial   Bioprinting [J]. J Mater Sci Mater Med, 30(2):28.
               Growth  Factor  Immobilized  on  Mussel-inspired  Three-     https://doi.org/10.1007/s10856-019-6230-1
               dimensional Bilayered Scaffold for Artificial Vascular Graft   48.  Kérourédan  O,  Hakobyan  D,  Rémy  M,  et al.,  2019,
               Application: In Vitro and In Vivo Evaluations [J]. J Colloid   In Situ  Prevascularization  Designed  by  Laser-assisted
               Interface Sci, 537:333–44.                          Bioprinting: Effect on Bone Regeneration [J]. Biofabrication,
               https://doi.org/10.1016/j.jcis.2018.11.039          11(4):045002.
           39.  Chen X, Ergun A, Gevgilili H, et al., 2013, Shell-core bi-     https://doi.org/10.1088/1758-5090/ab2620
               layered  Scaffolds  for  Engineering  of  Vascularized  Osteon-  49.  Chen H, Liu Y, Hu Q, 2015, A Novel Bioactive Membrane by
               like Structures [J]. Biomaterials, 34:8203–12.      Cell Electrospinning [J]. Exp Cell Res, 338(2):261–6.
               https://doi.org/10.1016/j.biomaterials.2013.07.035  50.  Redd MA, Zeinstra N, Qin W, et al., 2019, Patterned Human
           40.  Costa  PF,  Vaquette  C,  Zhang  Q,  et  al.,  2014,  Advanced   Microvascular  Grafts  Enable  Rapid  Vascularization  and
               Tissue  Engineering  Scaffold  Design  for  Regeneration  of   Increase Perfusion in Infarcted Rat Hearts [J]. Nat Commun,
               the  Complex  Hierarchical  Periodontal  Structure  [J].  J  Clin   10(1):584.
               Periodontol, 41(3):283–94.                          https://doi.org/10.1038/s41467-019-08388-7
               https://doi.org/10.1111/jcpe.12214              51.  Clyne AM, Swaminathan S, Lantada AD, 2019, Biofabrication
           41.  Vaquette  C,  Fan  W,  Xiao  Y,  et al.,  2012,  A  Biphasic   Strategies  for  Creating  Microvascular  Complexity  [J].
               Scaffold Design Combined with Cell Sheet Technology for   Biofabrication, 11(3):032001.
               Simultaneous  Regeneration  of  Alveolar  Bone/Periodontal      https://doi.org/10.1088/1758-5090/ab0621
               Ligament Complex [J]. Biomaterials, 33(22):5560–73.  52.  Chandra  P, Atala A,  2019,  Engineering  Blood Vessels  and
               https://doi.org/10.1016/j.biomaterials.2012.04.038  Vascularized  Tissues:  Technology  Trends  and  Potential
           42.  Kumar PT, Hashimi S, Saifzadeh S, et al., 2018, Additively   Clinical Applications [J]. Clin Sci, 133(9):1115–35.
               Manufactured  Biphasic  Construct  Loaded  with  BMP-2  for      https://doi.org/10.1042/cs20180155
               Vertical  Bone  Regeneration:  A  Pilot  Study  in  Rabbit  [J].   53.  Rouwkema J, Khademhosseini A, 2016, Vascularization and
               Mater Sci Eng C, 92:554–64.                         Angiogenesis in Tissue Engineering: Beyond Creating Static

           18                          International Journal of Bioprinting (2021)–Volume 7, Issue 1
   17   18   19   20   21   22   23   24   25   26   27