Page 21 - IJB-7-1
P. 21
Zhang, et al.
12. Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization- https://doi.org/10.1088/1758-5090/aa9ef1
based Bioprinting Process, Materials, Applications and 23. Gao Q, He Y, Fu JZ, et al., 2015, Coaxial Nozzle-assisted
Regulatory Challenges [J]. Biofabrication, 12(2):022001. 3D Bioprinting with Built-in Microchannels for Nutrients
https://doi.org/10.1088/1758-5090/ab6034 Delivery [J]. Biomaterials, 61:203–15.
13. Li W, Mille LS, Robledo JA, et al., 2020, Recent Advances https://doi.org/10.1016/j.biomaterials.2015.05.031
in Formulating and Processing Biomaterial Inks for Vat 24. Andrique L, Recher G, Alessandri K, et al., 2019, A Model
Polymerization-Based 3D Printing [J]. Adv Healthc Mater, of Guided Cell Self-organization for Rapid and Spontaneous
9(15):2000156. Formation of Functional Vessels [J]. Sci Adv, 5(6):eaau6562.
https://doi.org/10.1002/adhm.202000156 https://doi.org/10.1126/sciadv.aau6562
14. Quan H, Zhang T, Xu H, et al., 2020, Photo-curing 3D 25. Jia WT, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct
Printing Technique and its Challenges [J]. Bioact Mater, 3D Bioprinting of Perfusable Vascular Constructs Using a
5(1):110–5. Blend Bioink [J]. Biomaterials, 106:58–68.
15. Jun I, Han HS, Edwards JR, et al., 2018, Electrospun Fibrous https://doi.org/10.1016/j.biomaterials.2016.07.038
Scaffolds for Tissue Engineering: Viewpoints on Architecture 26. Millik SC, Dostie AM, Karis DG, et al., 2019, 3D Printed
and Fabrication [J]. Int J Mol Sci, 19(3):745. Coaxial Nozzles for the Extrusion of Hydrogel Tubes
https://doi.org/10.3390/ijms19030745 Toward Modeling Vascular Endothelium [J]. Biofabrication,
16. Liashenko I, Rosell-Llompart J, Cabot A, 2020, Ultrafast 3D 11(4):045009.
Printing with Submicrometer Features Using Electrostatic Jet https://doi.org/10.1088/1758-5090/ab2b4d
Deflection [J]. Nat Commun 11(1):753. 27. Narayanan LK, Huebner P, Fisher MB, et al., 2016,
https://doi.org/10.1038/s41467-020-14557-w 3D-Bioprinting of Polylactic Acid (PLA) Nanofiber-Alginate
17. Wang C, Meng G, Zhang L, et al., 2012, Physical Properties Hydrogel Bioink Containing Human Adipose-Derived Stem
and Biocompatibility of a Core-sheath Structure Composite Cells [J]. ACS Biomater Sci Eng, 2(10):1732–42.
Scaffold for Bone Tissue Engineering In Vitro [J]. J Biomed https://doi.org/10.1021/acsbiomaterials.6b00196
Biotechnol, 2012:579141 28. Tabriz AG, Hermida MA, Leslie NR, et al., 2015, Three-
18. Kolesky DB, Homan KA, Skylar-Scott MA, et al., 2016, dimensional Bioprinting of Complex Cell Laden Alginate
Three-dimensional Bioprinting of thick Vascularized Tissues Hydrogel Structures [J]. Biofabrication, 7(4):045012.
[J]. Proc Natl Acad Sci U S A, 113(12):3179–84. https://doi.org/10.1088/1758-5090/7/4/045012
https://doi.org/10.1073/pnas.1521342113 29. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D Printing
19. Skylar-Scott MA, Uzel SG, Nam LL, et al., 2019, of Layered Brain-like Structures Using Peptide Modified
Biomanufacturing of Organ-specific Tissues with High Gellan Gum Substrates [J]. Biomaterials, 67:264–73.
Cellular Density and Embedded Vascular Channels [J]. Sci https://doi.org/10.1016/j.biomaterials.2015.07.022
Adv, 5(9):eaaw2459. 30. Wang X, Li X, Dai X, et al., 2018, Coaxial Extrusion
https://doi.org/10.1126/sciadv.aaw2459 Bioprinted Shell-core Hydrogel Microfibers Mimic Glioma
20. Wang W, Junior JR, Nalesso PR, et al., 2019, Engineered 3D Microenvironment and Enhance the Drug Resistance of
Printed Poly(ɛ-caprolactone)/Graphene Scaffolds for Bone Cancer Cells [J]. Colloids Surf B Biointerfaces, 171:291–9.
Tissue Engineering [J]. Mater Sci Eng C, 100:759–70. https://doi.org/10.1016/j.colsurfb.2018.07.042
https://doi.org/10.1016/j.msec.2019.03.047 31. Abel SB, Ballarin FM, Abraham GA, 2020, Combination of
21. Chen YW, Shen YF, Ho CC, et al., 2018, Osteogenic and Electrospinning with other Techniques for the Fabrication
Angiogenic Potentials of the Cell-laden Hydrogel/Mussel- of 3D Polymeric and Composite Nanofibrous Scaffolds
inspired Calcium Silicate Complex Hierarchical Porous with Improved Cellular Interactions [J]. Nanotechnology,
Scaffold Fabricated by 3D Bioprinting [J]. Mater Sci Eng C, 31(17):172002.
91:679–87. https://doi.org/10.1088/1361-6528/ab6ab4
https://doi.org/10.1016/j.msec.2018.06.005 32. Lee SJ, Heo DN, Park JS, et al., 2015, Characterization and
22. Mekhileri NV, Lim KS, Brown GC, et al., 2018, Automated Preparation of Bio-tubular Scaffolds for Fabricating Artificial
3D Bioassembly of Micro-tissues for Biofabrication of Vascular Grafts by Combining Electrospinning and a 3D
Hybrid Tissue Engineered Constructs [J]. Biofabrication, Printing System [J]. Phys Chem Chem Phys, 17(5):2996–9
10(2):024103. https://doi.org/10.1039/c4cp04801f
International Journal of Bioprinting (2021)–Volume 7, Issue 1 17

