Page 23 - IJB-7-1
P. 23

Zhang, et al.
               Networks [J]. Trends Biotechnol, 34(9):733–45.  64.  Noor  N,  Shapira  A,  Edri  R,  et al.,  2019,  3D  Printing  of
               https://doi.org/10.1016/j.tibtech.2016.03.002       Personalized  Thick  and  Perfusable  Cardiac  Patches  and
           54.  Kinstlinger IS, Miller JS, 2016, 3D-printed Fluidic Networks   Hearts [J]. Adv Sci, 6(11):1900344.
               as  Vasculature  for  Engineered  Tissue  [J].  Lab Chip,      https://doi.org/10.1002/advs.201900344
               16(11):2025–43.                                 65.  Yang Y, Chen Z, Song X, et al., 2017, Biomimetic Anisotropic
               https://doi.org/10.1039/c6lc00193a                  Reinforcement  Architectures  by  Electrically  Assisted
           55.  Miri AK,  Khalilpour A,  Cecen  B,  et  al.,  2019,  Multiscale   Nanocomposite 3D Printing [J]. Adv Mater, 29(11):1605750.
               Bioprinting  of  Vascularized  Models  [J].  Biomaterials,      https://doi.org/10.1002/adma.201605750
               198:204–16.                                     66.  Chansoria P, Shirwaiker R, 2019, Characterizing the Process
               https://doi.org/10.1016/j.biomaterials.2018.08.006  Physics  of  Ultrasound-Assisted  Bioprinting  [J].  Sci Rep,
           56.  Sharma  D,  Ross  D,  Wang  G,  et al.,  2019,  Upgrading   9(1):13889.
               Prevascularization  in  Tissue  Engineering:  A  Review  of      https://doi.org/10.1038/s41598-019-50449-w
               Strategies  for  Promoting  Highly  Organized  Microvascular   67.  Kirillova  A,  Maxson  R,  Stoychev  G,  et  al.,  2017,  4D
               Network Formation [J]. Acta Biomater, 95:112–30.    Biofabrication  Using  Shape-Morphing  Hydrogels  [J].  Adv
               https://doi.org/10.1016/j.actbio.2019.03.016        Mater, 29(46):1703443.
           57.  Daly  AC,  Pitacco  P,  Nulty  J,  et  al.,  2018,  3D  Printed      https://doi.org/10.1002/adma.201703443
               Microchannel  Networks  to  Direct  Vascularisation  during   68.  Kokkinis D, Schaffner M, Studart AR, 2015, Multimaterial
               Endochondral Bone Repair [J]. Biomaterials, 162:34–46.  Magnetically Assisted  3D  Printing  of  Composite  Materials
               https://doi.org/10.1016/j.biomaterials.2018.01.057  [J]. Nat Commun, 6(1):8643.
           58.  Pimentel  CR,  Ko  SK,  Caviglia  C,  et al.,  2018,  Three-     https://doi.org/10.1038/ncomms9643
               dimensional Fabrication of Thick and Densely Populated Soft   69.  Kim Y, Yuk H, Zhao R, et al., 2018, Printing Ferromagnetic
               Constructs  with  Complex  and  Actively  Perfused  Channel   Domains for Untethered Fast-transforming Soft Materials [J].
               Network [J]. Acta Biomater, 65:174–84.              Nature, 558(7709):274–9.
               https://doi.org/10.1016/j.actbio.2017.10.047        https://doi.org/10.1038/s41586-018-0185-0
           59.  Negrini NC, Bonnetier M, Giatsidis G, et al., 2019, Tissue-  70.  Shim  JH,  Lee  JS,  Kim  JY,  et al.,  2012,  Bioprinting  of  a
               mimicking  Gelatin  Scaffolds  by  Alginate  Sacrificial   Mechanically Enhanced Three-dimensional Dual Cell-laden
               Templates for Adipose Tissue Engineering [J]. Acta Biomater,   Construct  for  Osteochondral  Tissue  Engineering  Using  a
               87:61–75.                                           Multi-head Tissue/organ Building System [J]. J Micromech
               https://doi.org/10.1016/j.actbio.2019.01.018        Microeng, 22(8):085014.
           60.  Ji  S, Almeida  E,  Guvendiren  M,  2019,  3D  Bioprinting  of      https://doi.org/10.1088/0960-1317/22/8/085014
               Complex  Channels  within  Cell-laden  Hydrogels  [J].  Acta   71.  Marga  F,  Jakab  K,  Khatiwala  C,  et al.,  2012,  Toward
               Biomater, 95:214–24.                                Engineering  Functional  Organ  Modules  by  Additive
               https://doi.org/10.1016/j.actbio.2019.02.038        Manufacturing [J]. Biofabrication, 4(2):022001.
           61.  Ouyang L, Armstrong JP, Chen Q, et al., 2020, Void-Free 3D      https://doi.org/10.1088/1758-5082/4/2/022001
               Bioprinting  for  In Situ  Endothelialization  and  Microfluidic   72.  Whatley  BR,  Kuo  J,  Shuai  C,  et al.,  2011,  Fabrication  of
               Perfusion [J]. Adv Funct Mater, 30(1):1908349.      a  Biomimetic  Elastic  Intervertebral  Disk  Scaffold  Using
               https://doi.org/10.1002/adfm.201908349              Additive Manufacturing [J]. Biofabrication, 3(1):015004.
           62.  Kim BS, Gao G, Kim JY, et al., 2019, 3D Cell Printing of      https://doi.org/10.1088/1758-5082/3/1/015004
               Perfusable Vascularized Human Skin Equivalent Composed   73.  Chen Z, Li D, Lu B, et al., 2004, Fabrication of Artificial
               of Epidermis, Dermis, and Hypodermis for Better Structural   Bioactive Bone Using Rapid Prototyping [J]. Rapid Prototyp
               Recapitulation  of  Native  Skin  [J]  Adv.  Healthcare  Mater,   J, 10(5):327–33.
               8(7):1801019.                                       https://doi.org/10.1108/13552540410562368
               https://doi.org/10.1002/adhm.201801019          74.  Liu  L,  Xiong  Z, Yan Y,  et al.,  2007,  Porous  Morphology,
           63.  Kang  HW,  Lee  SJ,  Ko  IK,  et  al.,  2016, A  3D  Bioprinting   Porosity,  Mechanical  Properties  of  Poly(α-hydroxy  acid)-
               System  to  Produce  Human-scale  Tissue  Constructs  with   Tricalcium  Phosphate  Composite  Scaffolds  Fabricated  by
               Structural Integrity [J]. Nat Biotechnol, 34(3):312–9.  Low-temperature Deposition [J]. J Biomed Mater Res Part A,
               https://doi.org/10.1038/nbt.3413                    82A(3):618–29.

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 1        19
   18   19   20   21   22   23   24   25   26   27   28