Page 23 - IJB-7-1
P. 23
Zhang, et al.
Networks [J]. Trends Biotechnol, 34(9):733–45. 64. Noor N, Shapira A, Edri R, et al., 2019, 3D Printing of
https://doi.org/10.1016/j.tibtech.2016.03.002 Personalized Thick and Perfusable Cardiac Patches and
54. Kinstlinger IS, Miller JS, 2016, 3D-printed Fluidic Networks Hearts [J]. Adv Sci, 6(11):1900344.
as Vasculature for Engineered Tissue [J]. Lab Chip, https://doi.org/10.1002/advs.201900344
16(11):2025–43. 65. Yang Y, Chen Z, Song X, et al., 2017, Biomimetic Anisotropic
https://doi.org/10.1039/c6lc00193a Reinforcement Architectures by Electrically Assisted
55. Miri AK, Khalilpour A, Cecen B, et al., 2019, Multiscale Nanocomposite 3D Printing [J]. Adv Mater, 29(11):1605750.
Bioprinting of Vascularized Models [J]. Biomaterials, https://doi.org/10.1002/adma.201605750
198:204–16. 66. Chansoria P, Shirwaiker R, 2019, Characterizing the Process
https://doi.org/10.1016/j.biomaterials.2018.08.006 Physics of Ultrasound-Assisted Bioprinting [J]. Sci Rep,
56. Sharma D, Ross D, Wang G, et al., 2019, Upgrading 9(1):13889.
Prevascularization in Tissue Engineering: A Review of https://doi.org/10.1038/s41598-019-50449-w
Strategies for Promoting Highly Organized Microvascular 67. Kirillova A, Maxson R, Stoychev G, et al., 2017, 4D
Network Formation [J]. Acta Biomater, 95:112–30. Biofabrication Using Shape-Morphing Hydrogels [J]. Adv
https://doi.org/10.1016/j.actbio.2019.03.016 Mater, 29(46):1703443.
57. Daly AC, Pitacco P, Nulty J, et al., 2018, 3D Printed https://doi.org/10.1002/adma.201703443
Microchannel Networks to Direct Vascularisation during 68. Kokkinis D, Schaffner M, Studart AR, 2015, Multimaterial
Endochondral Bone Repair [J]. Biomaterials, 162:34–46. Magnetically Assisted 3D Printing of Composite Materials
https://doi.org/10.1016/j.biomaterials.2018.01.057 [J]. Nat Commun, 6(1):8643.
58. Pimentel CR, Ko SK, Caviglia C, et al., 2018, Three- https://doi.org/10.1038/ncomms9643
dimensional Fabrication of Thick and Densely Populated Soft 69. Kim Y, Yuk H, Zhao R, et al., 2018, Printing Ferromagnetic
Constructs with Complex and Actively Perfused Channel Domains for Untethered Fast-transforming Soft Materials [J].
Network [J]. Acta Biomater, 65:174–84. Nature, 558(7709):274–9.
https://doi.org/10.1016/j.actbio.2017.10.047 https://doi.org/10.1038/s41586-018-0185-0
59. Negrini NC, Bonnetier M, Giatsidis G, et al., 2019, Tissue- 70. Shim JH, Lee JS, Kim JY, et al., 2012, Bioprinting of a
mimicking Gelatin Scaffolds by Alginate Sacrificial Mechanically Enhanced Three-dimensional Dual Cell-laden
Templates for Adipose Tissue Engineering [J]. Acta Biomater, Construct for Osteochondral Tissue Engineering Using a
87:61–75. Multi-head Tissue/organ Building System [J]. J Micromech
https://doi.org/10.1016/j.actbio.2019.01.018 Microeng, 22(8):085014.
60. Ji S, Almeida E, Guvendiren M, 2019, 3D Bioprinting of https://doi.org/10.1088/0960-1317/22/8/085014
Complex Channels within Cell-laden Hydrogels [J]. Acta 71. Marga F, Jakab K, Khatiwala C, et al., 2012, Toward
Biomater, 95:214–24. Engineering Functional Organ Modules by Additive
https://doi.org/10.1016/j.actbio.2019.02.038 Manufacturing [J]. Biofabrication, 4(2):022001.
61. Ouyang L, Armstrong JP, Chen Q, et al., 2020, Void-Free 3D https://doi.org/10.1088/1758-5082/4/2/022001
Bioprinting for In Situ Endothelialization and Microfluidic 72. Whatley BR, Kuo J, Shuai C, et al., 2011, Fabrication of
Perfusion [J]. Adv Funct Mater, 30(1):1908349. a Biomimetic Elastic Intervertebral Disk Scaffold Using
https://doi.org/10.1002/adfm.201908349 Additive Manufacturing [J]. Biofabrication, 3(1):015004.
62. Kim BS, Gao G, Kim JY, et al., 2019, 3D Cell Printing of https://doi.org/10.1088/1758-5082/3/1/015004
Perfusable Vascularized Human Skin Equivalent Composed 73. Chen Z, Li D, Lu B, et al., 2004, Fabrication of Artificial
of Epidermis, Dermis, and Hypodermis for Better Structural Bioactive Bone Using Rapid Prototyping [J]. Rapid Prototyp
Recapitulation of Native Skin [J] Adv. Healthcare Mater, J, 10(5):327–33.
8(7):1801019. https://doi.org/10.1108/13552540410562368
https://doi.org/10.1002/adhm.201801019 74. Liu L, Xiong Z, Yan Y, et al., 2007, Porous Morphology,
63. Kang HW, Lee SJ, Ko IK, et al., 2016, A 3D Bioprinting Porosity, Mechanical Properties of Poly(α-hydroxy acid)-
System to Produce Human-scale Tissue Constructs with Tricalcium Phosphate Composite Scaffolds Fabricated by
Structural Integrity [J]. Nat Biotechnol, 34(3):312–9. Low-temperature Deposition [J]. J Biomed Mater Res Part A,
https://doi.org/10.1038/nbt.3413 82A(3):618–29.
International Journal of Bioprinting (2021)–Volume 7, Issue 1 19

