Page 100 - IJB-7-3
P. 100

Coaxial Electrohydrodynamic Bioprinting of Pre-Vascularized Tissues
               Three-dimensional  Bioprinting  of Thick  Vascularized      https://doi.org/10.1089/ten.tec.2014.0149
               Tissues. Proc Natl Acad Sci, 113:3179–84.       24.  Workman  VL,  Tezera  LB, Elkington  PT, et  al., 2014,
               https://doi.org/10.1073/pnas.1521342113             Controlled  Generation  of Microspheres Incorporating
           17.  Kolesky DB,  Truby RL, Gladman  AS, et al., 2014, 3D   Extracellular  Matrix Fibrils for  Three-Dimensional  Cell
               Bioprinting of  Vascularized,  Heterogeneous Cell-laden   Culture. Adv Funct Mater, 24:2648–57.
               Tissue Constructs. Adv Mater, 26:3124.              https://doi.org/10.1002/adfm.201303891
               https://doi.org/10.1002/adma.201305506          25.  Sampson SL, Saraiva L, Gustafsson K, et al., Cell
           18.  Feng F, He J, Li J, et al., 2019, Multicomponent Bioprinting   Electrospinning: An In Vitro and In Vivo Study. Small, 10:78–82.
               of Heterogeneous Hydrogel Constructs Based on Microfluidic      https://doi.org/10.1002/smll.201300804
               Printheads. Int J Bioprint, 5:202.              26.  Jayasinghe SN,  Qureshi  AN,  Eagles PA, 2006,
               https://doi.org/10.18063/ijb.v5i2.202               Electrohydrodynamic Jet Processing: An Advanced Electric-
           19.  Kang HW, Lee  SJ, Ko IK, et  al., 2016, A 3D Bioprinting   Field-Driven Jetting Phenomenon for Processing Living
               System  to  Produce  Human-scale  Tissue  Constructs  with   Cells. Small, 2:216–9.
               Structural Integrity. Nat Biotechnol, 34:312–9.     https://doi.org/10.1002/smll.200500291
               https://doi.org/10.1038/nbt.3413                27.  Wang J, Huang R, Chen H, et al., 2019, Personalized Single-
           20.  Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and   Cell Encapsulation Using E-Jet 3D Printing with AC-Pulsed
               Organs. Nat Biotechnol, 32:773.                     Modulation. Macromol Mater Eng, 304:1800776.
               https://doi.org/10.1038/nbt.2958                    https://doi.org/10.1002/mame.201800776
           21.  He J, Zhang  B, Li  Z, et  al., 2020, High-resolution   28.  Yeo M, Ha J, Lee H, et al., 2016, Fabrication of hASCs-laden
               Electrohydrodynamic  Bioprinting:  A  New Biofabrication   Structures Using Extrusion-based Cell Printing Supplemented
               Strategy for Biomimetic Micro/Nanoscale Architectures and   with an Electric Field. Acta Biomater, 38:33–43.
               Living Tissue Constructs. Biofabrication, 12:042002.     https://doi.org/10.1016/j.actbio.2016.04.017
               https://doi.org/10.1088/1758-5090/aba1fa        29.  He J, Zhao  X, Chang  J, et  al., 2017, Microscale  Electro-
           22.  Huo H, Liu F, Luo Y, et al., 2020, Triboelectric Nanogenerators   Hydrodynamic  Cell  Printing  with High  Viability.  Small,
               for Electro-assisted Cell Printing. Nano Energy, 67:104150.  2017:1702626.
               https://doi.org/10.1016/j.nanoen.2019.104150        https://doi.org/10.1002/smll.201702626
           23.  Gasperini  L,  Maniglio  D, Motta  A, et  al.,  An   30.  Liang HT, He JK, Chang JK, et al., 2018, Coaxial Nozzle-
               Electrohydrodynamic  Bioprinter  for  Alginate  Hydrogels   assisted  Electrohydrodynamic  Printing  for Microscale  3D
               Containing Living Cells.  Tissue Eng Part  C Methods,   Cell-laden Constructs. Int J Bioprint, 4:8.
               21:123–32.                                          https://doi.org/10.18063/IJB.v4i1.127































           96                          International Journal of Bioprinting (2021)–Volume 7, Issue 3
   95   96   97   98   99   100   101   102   103   104   105