Page 126 - IJB-7-3
P. 126
Systematic Thermal Analysis for Accurately Predicting the Extrusion Printability
15. Ma L, Li Y, Wu Y, et al., 2020, 3D Bioprinted Hyaluronic Fabrication. Biodes Manuf, 3:109–21.
Acid-Based Cell-Laden Scaffold for Brain Microenvironment https://doi.org/10.1007/s42242-020-00065-9.
Simulation. Biodes Manuf, 3:164–74. 27. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of Bioink
https://doi.org/10.1007/s42242-020-00076-6. Properties on Printability and Cell Viability for 3D Bioplotting
16. Lee V, Singh G, Trasattijohn P, et al., 2014, Design of Embryonic Stem Cells. Biofabrication, 8:035020.
and Fabrication of Human Skin by Three-Dimensional https://doi.org/10.1088/1758-5090/8/3/035020.
Bioprinting. Tissue Eng Part C Methods, 20:473–84. 28. Kolan KC, Semon JA, Bromet B, et al., 2019, Bioprinting
17. Peng W, Unutmaz D, Ozbolat IT, 2016, Bioprinting Towards with Human Stem Cell-Laden Alginate-Gelatin Bioink and
Physiologically Relevant Tissue Models for Pharmaceutics. Bioactive Glass for Tissue Engineering. Int J Bioprint, 5:204.
Trends Biotechnol, 34:722–32. https://doi.org/10.18063/ijb.v5i2.2.204.
https://doi.org/10.1016/j.tibtech.2016.05.013. 29. Zhang Z, Jin Y, Yin J, et al., 2018, Evaluation of Bioink
18. Zhang B, Luo Y, Ma L, et al., 2018, 3D Bioprinting: An Printability for Bioprinting Applications. Appl Phys Rev,
Emerging Technology Full of Opportunities and Challenges. 5:041304.
Biodes Manuf, 1:2–13. 30. Yin J, Zhao D, Liu J, 2019, Trends on Physical Understanding
19. Gudapati H, Dey M, Ozbolat I, 2016, A Comprehensive of Bioink Printability. Biodes Manuf, 2:50–4.
Review on Droplet-Based Bioprinting: Past, Present and 31. Suntornnond R, Tan EY, An J, et al., 2016, A Mathematical
Future. Biomaterials, 102:20–42. Model on the Resolution of Extrusion Bioprinting for the
https://doi.org/10.1016/j.biomaterials.2016.06.012. Development of New Bioinks. Materials (Basel), 9:756.
20. Ying G, Jiang N, Yu C, et al., 2018, Three-Dimensional https://doi.org/10.3390/ma9090756.
Bioprinting of Gelatin Methacryloyl (GelMA). Biodes 32. Lee JM, Yeong WY, 2014, A Preliminary Model of Time-
Manuf, 1:215–24. Pressure Dispensing System for Bioprinting Based on
https://doi.org/10.1007/s42242-018-0028-8. Printing and Material Parameters. Virtual Phys Prototyp,
21. Ma L, Li Y, Wu Y, et al., 2020, The Construction of In Vitro 10:3–8.
Tumor Models Based on 3D Bioprinting. Biodes Manuf, https://doi.org/10.1080/17452759.2014.979557.
3:227–36. 33. Paxton N, Smolan W, Bock T, et al., 2017, Proposal to Assess
22. Alruwaili M, Lopez JA, McCarthy K, et al., 2019, Liquid- Printability of Bioinks for Extrusion-Based Bioprinting
phase 3D Bioprinting of Gelatin Alginate Hydrogels: and Evaluation of Rheological Properties Governing
Influence of Printing Parameters on Hydrogel Line Width and Bioprintability. Biofabrication, 9:044107.
Layer Height. Biodes Manuf, 2:172–80. https://doi.org/10.1088/1758-5090/aa8dd8.
https://doi.org/10.1007/s42242-019-00043-w. 34. Chen X, Li M, Ke H, 2008, Modeling of the Flow Rate in the
23. Chang R, Nam J, Sun W, 2008, Effects of Dispensing Pressure Dispensing-Based Process for Fabricating Tissue Scaffolds.
and Nozzle Diameter on Cell Survival from Solid Freeform J Manuf Sci Eng, 130:021003.
Fabrication-Based Direct Cell Writing. Tissue Eng Part A, https://doi.org/10.1115/1.2789725.
14:41–8. 35. Billiet T, Gevaert E, de Schryver T, et al., 2014, The 3D
https://doi.org/10.1089/ten.2007.0004. Printing of Gelatin Methacrylamide Cell-Laden Tissue-
24. Gao T, Gillispie GJ, Copus JS, et al., 2018, Optimization Engineered Constructs with High Cell Viability. Biomaterials,
of Gelatin-Alginate Composite Bioink Printability 35:49–62.
Using Rheological Parameters: A Systematic Approach. https://doi.org/10.1016/j.biomaterials.2013.09.078.
Biofabrication, 10:034106. 36. Mahmoudi Y, 2014, Effect of Thermal Radiation on
https://doi.org/10.1088/1758-5090/aacdc7. Temperature Differential in a Porous Medium Under Local
25. Zhao Y, Li Y, Mao S, et al., 2015, The Influence of Thermal Non-Equilibrium Condition. Int J Heat Mass Transf,
Printing Parameters on Cell Survival Rate and Printability 76:105–21.
in Microextrusion-Based 3D Cell Printing Technology. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.024.
Biofabrication, 7:045002. 37. Zhang B, Xue Q, Hu HY, et al., 2019, Integrated 3D
https://doi.org/10.1088/1758-5090/7/4/045002. Bioprinting-Based Geometry-Control Strategy for Fabricating
26. Gong Y, Bi Z, Bian X, et al., 2020, Study on Linear Bio- Corneal Substitutes. J Zhejiang Univ Sci B, 20:945–59.
Structure Print Process Based on Alginate Bio-Ink in 3D Bio- https://doi.org/10.1631/jzus.b1900190.
122 International Journal of Bioprinting (2021)–Volume 7, Issue 3

