Page 126 - IJB-7-3
P. 126

Systematic Thermal Analysis for Accurately Predicting the Extrusion Printability
           15.  Ma L, Li Y, Wu Y, et al., 2020, 3D Bioprinted Hyaluronic   Fabrication. Biodes Manuf, 3:109–21.
               Acid-Based Cell-Laden Scaffold for Brain Microenvironment      https://doi.org/10.1007/s42242-020-00065-9.
               Simulation. Biodes Manuf, 3:164–74.             27.  Ouyang  L,  Yao  R,  Zhao  Y,  et al.,  2016,  Effect  of  Bioink
               https://doi.org/10.1007/s42242-020-00076-6.         Properties on Printability and Cell Viability for 3D Bioplotting
           16.  Lee  V,  Singh  G,  Trasattijohn  P,  et  al.,  2014,  Design   of Embryonic Stem Cells. Biofabrication, 8:035020.
               and  Fabrication  of Human  Skin  by  Three-Dimensional      https://doi.org/10.1088/1758-5090/8/3/035020.
               Bioprinting. Tissue Eng Part C Methods, 20:473–84.  28.  Kolan KC, Semon JA, Bromet B, et al., 2019, Bioprinting
           17.  Peng W, Unutmaz D, Ozbolat IT, 2016, Bioprinting Towards   with Human Stem Cell-Laden Alginate-Gelatin Bioink and
               Physiologically Relevant Tissue Models for Pharmaceutics.   Bioactive Glass for Tissue Engineering. Int J Bioprint, 5:204.
               Trends Biotechnol, 34:722–32.                       https://doi.org/10.18063/ijb.v5i2.2.204.
               https://doi.org/10.1016/j.tibtech.2016.05.013.  29.  Zhang  Z,  Jin  Y,  Yin  J,  et al., 2018, Evaluation  of Bioink
           18.  Zhang  B,  Luo Y,  Ma  L,  et  al.,  2018,  3D  Bioprinting: An   Printability  for  Bioprinting  Applications.  Appl  Phys  Rev,
               Emerging Technology Full of Opportunities and Challenges.   5:041304.
               Biodes Manuf, 1:2–13.                           30.  Yin J, Zhao D, Liu J, 2019, Trends on Physical Understanding
           19.  Gudapati  H,  Dey  M,  Ozbolat  I,  2016,  A  Comprehensive   of Bioink Printability. Biodes Manuf, 2:50–4.
               Review  on  Droplet-Based  Bioprinting:  Past,  Present  and   31.  Suntornnond R, Tan EY, An J, et al., 2016, A Mathematical
               Future. Biomaterials, 102:20–42.                    Model on the Resolution of Extrusion Bioprinting for the
               https://doi.org/10.1016/j.biomaterials.2016.06.012.  Development of New Bioinks. Materials (Basel), 9:756.
           20.  Ying  G,  Jiang  N,  Yu  C,  et al.,  2018, Three-Dimensional      https://doi.org/10.3390/ma9090756.
               Bioprinting  of  Gelatin  Methacryloyl  (GelMA).  Biodes   32.  Lee  JM, Yeong WY,  2014, A  Preliminary  Model  of Time-
               Manuf, 1:215–24.                                    Pressure Dispensing  System  for  Bioprinting  Based  on
               https://doi.org/10.1007/s42242-018-0028-8.          Printing  and  Material  Parameters.  Virtual Phys Prototyp,
           21.  Ma L, Li Y, Wu Y, et al., 2020, The Construction of In Vitro   10:3–8.
               Tumor  Models  Based  on  3D  Bioprinting.  Biodes Manuf,      https://doi.org/10.1080/17452759.2014.979557.
               3:227–36.                                       33.  Paxton N, Smolan W, Bock T, et al., 2017, Proposal to Assess
           22.  Alruwaili M, Lopez JA, McCarthy K, et al., 2019, Liquid-  Printability  of Bioinks  for Extrusion-Based  Bioprinting
               phase  3D  Bioprinting  of  Gelatin  Alginate  Hydrogels:   and Evaluation  of Rheological  Properties  Governing
               Influence of Printing Parameters on Hydrogel Line Width and   Bioprintability. Biofabrication, 9:044107.
               Layer Height. Biodes Manuf, 2:172–80.               https://doi.org/10.1088/1758-5090/aa8dd8.
               https://doi.org/10.1007/s42242-019-00043-w.     34.  Chen X, Li M, Ke H, 2008, Modeling of the Flow Rate in the
           23.  Chang R, Nam J, Sun W, 2008, Effects of Dispensing Pressure   Dispensing-Based Process for Fabricating Tissue Scaffolds.
               and Nozzle Diameter on Cell Survival from Solid Freeform   J Manuf Sci Eng, 130:021003.
               Fabrication-Based  Direct  Cell Writing.  Tissue Eng Part A,      https://doi.org/10.1115/1.2789725.
               14:41–8.                                        35.  Billiet  T,  Gevaert  E,  de  Schryver  T,  et al., 2014,  The 3D
               https://doi.org/10.1089/ten.2007.0004.              Printing of Gelatin  Methacrylamide  Cell-Laden  Tissue-
           24.  Gao  T,  Gillispie  GJ,  Copus  JS,  et al.,  2018,  Optimization   Engineered Constructs with High Cell Viability. Biomaterials,
               of  Gelatin-Alginate  Composite  Bioink  Printability  35:49–62.
               Using  Rheological  Parameters:  A  Systematic  Approach.      https://doi.org/10.1016/j.biomaterials.2013.09.078.
               Biofabrication, 10:034106.                      36.  Mahmoudi  Y,  2014,  Effect  of  Thermal  Radiation  on
               https://doi.org/10.1088/1758-5090/aacdc7.           Temperature Differential in a Porous Medium Under Local
           25.  Zhao  Y,  Li  Y,  Mao  S,  et al.,  2015,  The  Influence  of   Thermal Non-Equilibrium Condition. Int J Heat Mass Transf,
               Printing Parameters on Cell  Survival Rate  and Printability   76:105–21.
               in  Microextrusion-Based  3D  Cell  Printing  Technology.      https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.024.
               Biofabrication, 7:045002.                       37.  Zhang  B,  Xue  Q,  Hu  HY,  et  al.,  2019,  Integrated  3D
               https://doi.org/10.1088/1758-5090/7/4/045002.       Bioprinting-Based Geometry-Control Strategy for Fabricating
           26.  Gong Y, Bi Z, Bian X, et al., 2020, Study on Linear Bio-  Corneal Substitutes. J Zhejiang Univ Sci B, 20:945–59.
               Structure Print Process Based on Alginate Bio-Ink in 3D Bio-     https://doi.org/10.1631/jzus.b1900190.

           122                         International Journal of Bioprinting (2021)–Volume 7, Issue 3
   121   122   123   124   125   126   127   128   129   130   131