Page 71 - IJB-7-3
P. 71

Yang, et al.
           20.  Caulfield JB, Borg TK, 1979, The Collagen Network of the   Architecture. Adv Funct Mater, 26:5873–83.
               Heart. Lab Invest, 40:364–72.                       https://doi.org/10.1002/adfm.201601146
           21.  Ramme AP, Koenig L, Hasenberg T, et al., 2018, Towards an   33.  Miri AK, Daniel N, Luis I, et al., 2018, Microfluidics-Enabled
               Autologous iPSC-Derived Patient-on-a-Chip.          Multimaterial Maskless Stereolithographic Bioprinting. Adv
           22.  Grevesse T, Verseavel M, Circelli G, et al., 2013, A Simple   Mater, 30:1800242.
               Route  to  Functionalize  Polyacrylamide  Hydrogels for the      https://doi.org/10.1002/adma.201800242
               Independent  Tuning of Mechanotransduction  Cues.  Lab   34.  Fenech M, Girod V, Claveria V,  et al.,  2019,  Microfluidic
               Chip, 13:777–80.                                    Blood Vasculature Replicas using Backside Lithography. Lab
               https://doi.org/10.1039/c2lc41168g                  Chip, 19:2096106.
           23.  Cimetta  E, Pizzato  S, Bollini S,  et al., 2009, Production      https://doi.org/10.1039/c9lc00254e
               of  Arrays  of  Cardiac  and  Skeletal  Muscle  Myofibers  by   35.  Bartholomaand  P,  Gorjup  E,  Monz  D,  et  al.,  2005,
               Micropatterning  Techniques  on a Soft Substrate.  Biomed   Three-Dimensional  In Vitro Reaggregates of Embryonic
               Microdevices, 11:389–400.                           Cardiomyocytes: A Potential Model System for Monitoring
               https://doi.org/10.1007/s10544-008-9245-9           Effects of Bioactive Agents. J Biomol Screen, 10:814–22.
           24.  Camelliti P, Gallagher JO, Kohl P, et al., 2006, Micropatterned      https://doi.org/10.1177/1087057105280070
               Cell Cultures on Elastic Membranes as an In Vitro Model of   36.  Ronaldson-Bouchard  K, Ma SP,  Yeager  K,  et  al., 2018,
               Myocardium. Nat Protoc, 1:1379–91.                  Advanced Maturation of Human Cardiac Tissue Grown from
               https://doi.org/10.1038/nprot.2006.203              Pluripotent Stem Cells. Nature, 556:239–43.
           25.  Annabi N, Tsang K, Mithieux SM, et al., 2013, Highly Elastic      https://doi.org/10.1038/s41586-018-0016-3
               Micropatterned Hydrogel for Engineering Functional Cardiac   37.  Tandon N, Marsano A, Maidhof R, et al., 2011, Optimization
               Tissue. Adv Funct Mater, 23:4949–59.                of  Electrical  Stimulation  Parameters  for  Cardiac  Tissue
               https://doi.org/10.1002/adfm.201300570              Engineering. J Tissue Eng Regen Med, 5:E115–25.
           26.  Versaevel M, Grevesse  T, Gabriele S, 2012, Spatial      https://doi.org/10.1002/term.377
               Coordination  Between Cell and Nuclear Shape within   38.  Valls-Margarit  M, Iglesias-Garcia  O, di Guglielmo  C,
               Micropatterned Endothelial Cells. Nat Commun, 3:671.  et al., 2019, Engineered Macroscale Cardiac Constructs
               https://doi.org/10.1038/ncomms1668                  Elicit  Human Myocardial  Tissue-like  Functionality.  Stem
           27.  Mccain  ML,  Agarwal  A, Nesmith  HW,  et  al., 2014,   Cell Reports, 13:207–20.
               Micromolded Gelatin Hydrogels for Extended  Culture of      https://doi.org/10.1016/j.stemcr.2019.05.024
               Engineered Cardiac Tissues. Biomaterials, 35:5462–71.  39.  Zhang N, Stauffer F, Simona BR, et al., 2018, Multifunctional
               https://doi.org/10.1016/j.biomaterials.2014.03.052  3D Electrode  Platform  for Real-Time  In Situ Monitoring
           28.  Liu J, Miller K, Ma X, et al., 2020, Direct 3D Bioprinting   and Stimulation  of Cardiac  Tissues.  Biosens Bioelectron,
               of Cardiac Micro-Tissues Mimicking Native Myocardium.   112:149–55.
               Biomaterials, 256:120204.                           https://doi.org/10.1016/j.bios.2018.04.037
               https://doi.org/10.1016/j.biomaterials.2020.120204  40.  Moon SH,  Cho  YW, Shim HE,  et al., 2020, Electrically
           29.  Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi-  Stimulable Indium Tin Oxide Plate for Long-Term In Vitro
               Tissue Interactions in an Integrated Three-Tissue Organ-on-  Cardiomyocyte Culture. Biomater Res, 24:10.
               a-Chip Platform. Sci Rep, 7:8837.                   https://doi.org/10.21203/rs.3.rs-22137/v2
           30.  Zhang  YS, Arneri A,  Bersini  S,  et  al., 2016, Bioprinting   41.  Oyunbaatar  NE, Shanmugasundaram  A, Jeong  YJ,  et  al.,
               3D Microfibrous Scaffolds for Engineering Endothelialized   2020, Micro-Patterned  SU-8 Cantilever  Integrated  with
               Myocardium and Heart-on-a-Chip. Biomaterials, 110:45–59.  Metal Electrode for Enhanced Electromechanical Stimulation
               https://doi.org/10.1016/j.biomaterials.2016.09.003  of Cardiac Cells. Colloids Surf B Biointerfaces, 186:110682.
           31.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic      https://doi.org/10.1016/j.colsurfb.2019.110682
               Bioprinting  of Heterogeneous  3D  Tissue Constructs  Using   42.  Yuk H, Lu B, Lin S, et al., 2020, 3D Printing of Conducting
               Low-Viscosity Bioink. Adv Mater, 28:677–84.         Polymers. Nat Commun, 11:1604.
               https://doi.org/10.1002/adma.201503310          43.  Adly N,  Weidlich  S, Seyock S,  et al., 2018, Printed
           32.  Morgan KY, Sklaviadis D, Tochka ZL, et al., 2016, Multi-  Microelectrode  Arrays  on  Soft  Materials:  From  PDMS to
               Material Tissue Engineering Scaffold with Hierarchical Pore   Hydrogels. NPJ Flex Electron, 2:15.

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3        67
   66   67   68   69   70   71   72   73   74   75   76