Page 71 - IJB-7-3
P. 71
Yang, et al.
20. Caulfield JB, Borg TK, 1979, The Collagen Network of the Architecture. Adv Funct Mater, 26:5873–83.
Heart. Lab Invest, 40:364–72. https://doi.org/10.1002/adfm.201601146
21. Ramme AP, Koenig L, Hasenberg T, et al., 2018, Towards an 33. Miri AK, Daniel N, Luis I, et al., 2018, Microfluidics-Enabled
Autologous iPSC-Derived Patient-on-a-Chip. Multimaterial Maskless Stereolithographic Bioprinting. Adv
22. Grevesse T, Verseavel M, Circelli G, et al., 2013, A Simple Mater, 30:1800242.
Route to Functionalize Polyacrylamide Hydrogels for the https://doi.org/10.1002/adma.201800242
Independent Tuning of Mechanotransduction Cues. Lab 34. Fenech M, Girod V, Claveria V, et al., 2019, Microfluidic
Chip, 13:777–80. Blood Vasculature Replicas using Backside Lithography. Lab
https://doi.org/10.1039/c2lc41168g Chip, 19:2096106.
23. Cimetta E, Pizzato S, Bollini S, et al., 2009, Production https://doi.org/10.1039/c9lc00254e
of Arrays of Cardiac and Skeletal Muscle Myofibers by 35. Bartholomaand P, Gorjup E, Monz D, et al., 2005,
Micropatterning Techniques on a Soft Substrate. Biomed Three-Dimensional In Vitro Reaggregates of Embryonic
Microdevices, 11:389–400. Cardiomyocytes: A Potential Model System for Monitoring
https://doi.org/10.1007/s10544-008-9245-9 Effects of Bioactive Agents. J Biomol Screen, 10:814–22.
24. Camelliti P, Gallagher JO, Kohl P, et al., 2006, Micropatterned https://doi.org/10.1177/1087057105280070
Cell Cultures on Elastic Membranes as an In Vitro Model of 36. Ronaldson-Bouchard K, Ma SP, Yeager K, et al., 2018,
Myocardium. Nat Protoc, 1:1379–91. Advanced Maturation of Human Cardiac Tissue Grown from
https://doi.org/10.1038/nprot.2006.203 Pluripotent Stem Cells. Nature, 556:239–43.
25. Annabi N, Tsang K, Mithieux SM, et al., 2013, Highly Elastic https://doi.org/10.1038/s41586-018-0016-3
Micropatterned Hydrogel for Engineering Functional Cardiac 37. Tandon N, Marsano A, Maidhof R, et al., 2011, Optimization
Tissue. Adv Funct Mater, 23:4949–59. of Electrical Stimulation Parameters for Cardiac Tissue
https://doi.org/10.1002/adfm.201300570 Engineering. J Tissue Eng Regen Med, 5:E115–25.
26. Versaevel M, Grevesse T, Gabriele S, 2012, Spatial https://doi.org/10.1002/term.377
Coordination Between Cell and Nuclear Shape within 38. Valls-Margarit M, Iglesias-Garcia O, di Guglielmo C,
Micropatterned Endothelial Cells. Nat Commun, 3:671. et al., 2019, Engineered Macroscale Cardiac Constructs
https://doi.org/10.1038/ncomms1668 Elicit Human Myocardial Tissue-like Functionality. Stem
27. Mccain ML, Agarwal A, Nesmith HW, et al., 2014, Cell Reports, 13:207–20.
Micromolded Gelatin Hydrogels for Extended Culture of https://doi.org/10.1016/j.stemcr.2019.05.024
Engineered Cardiac Tissues. Biomaterials, 35:5462–71. 39. Zhang N, Stauffer F, Simona BR, et al., 2018, Multifunctional
https://doi.org/10.1016/j.biomaterials.2014.03.052 3D Electrode Platform for Real-Time In Situ Monitoring
28. Liu J, Miller K, Ma X, et al., 2020, Direct 3D Bioprinting and Stimulation of Cardiac Tissues. Biosens Bioelectron,
of Cardiac Micro-Tissues Mimicking Native Myocardium. 112:149–55.
Biomaterials, 256:120204. https://doi.org/10.1016/j.bios.2018.04.037
https://doi.org/10.1016/j.biomaterials.2020.120204 40. Moon SH, Cho YW, Shim HE, et al., 2020, Electrically
29. Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi- Stimulable Indium Tin Oxide Plate for Long-Term In Vitro
Tissue Interactions in an Integrated Three-Tissue Organ-on- Cardiomyocyte Culture. Biomater Res, 24:10.
a-Chip Platform. Sci Rep, 7:8837. https://doi.org/10.21203/rs.3.rs-22137/v2
30. Zhang YS, Arneri A, Bersini S, et al., 2016, Bioprinting 41. Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, et al.,
3D Microfibrous Scaffolds for Engineering Endothelialized 2020, Micro-Patterned SU-8 Cantilever Integrated with
Myocardium and Heart-on-a-Chip. Biomaterials, 110:45–59. Metal Electrode for Enhanced Electromechanical Stimulation
https://doi.org/10.1016/j.biomaterials.2016.09.003 of Cardiac Cells. Colloids Surf B Biointerfaces, 186:110682.
31. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic https://doi.org/10.1016/j.colsurfb.2019.110682
Bioprinting of Heterogeneous 3D Tissue Constructs Using 42. Yuk H, Lu B, Lin S, et al., 2020, 3D Printing of Conducting
Low-Viscosity Bioink. Adv Mater, 28:677–84. Polymers. Nat Commun, 11:1604.
https://doi.org/10.1002/adma.201503310 43. Adly N, Weidlich S, Seyock S, et al., 2018, Printed
32. Morgan KY, Sklaviadis D, Tochka ZL, et al., 2016, Multi- Microelectrode Arrays on Soft Materials: From PDMS to
Material Tissue Engineering Scaffold with Hierarchical Pore Hydrogels. NPJ Flex Electron, 2:15.
International Journal of Bioprinting (2021)–Volume 7, Issue 3 67

