Page 72 - IJB-7-3
P. 72

Heart-on-a-chip
               https://doi.org/10.1038/s41528-018-0027-z       55.  Polacheck W, William  J, Chen CS, 2016, Measuring Cell-
           44.  Zhao G, Zhang X, Li B, et al., 2020, Solvent-Free Fabrication   Generated Forces:  A  Guide to the  Available  Tools.  Nat
               of Carbon Nanotube/Silk  Fibroin Electrospun  Matrices for   Methods, 13:415–23.
               Enhancing Cardiomyocyte Functionalities. ACS Biomater Sci      https://doi.org/10.1038/nmeth.3834
               Eng, 6:1630–40.                                 56.  Yu  Y, Fu F, Shang L,  et  al., 2017, Bioinspired  Helical
               https://doi.org/10.1021/acsbiomaterials.9b01682     Microfibers from Microfluidics. Adv Mater, 29:1605765.
           45.  Stoppel  WL, Kaplan DL, Black LD, 2016, Electrical      https://doi.org/10.1002/adma.201605765
               and Mechanical  Stimulation  of Cardiac  Cells and  Tissue   57.  Ma X, Dewan S, Liu J, et al., 2018, 3D Printed Micro-Scale
               Constructs. Adv Drug Deliv Rev, 96:135–55.          Force Gauge  Arrays to  Improve  Human Cardiac  Tissue
               https://doi.org/10.1016/j.addr.2015.07.009          Maturation and Enable High Throughput Drug Testing. Acta
           46.  Mihic A, Li J, Miyagi Y, et al., 2014, The Effect of Cyclic   Biomat, 95:319–27.
               Stretch on Maturation  and 3D  Tissue Formation of      https://doi.org/10.1016/j.actbio.2018.12.026
               Human Embryonic Stem Cell-Derived Cardiomyocytes.   58.  Tan JL, Tien J, Pirone DM, et al., 2003, Cells Lying on a Bed
               Biomaterials, 35:2798–808.                          of Microneedles: An Approach to Isolate Mechanical Force.
               https://doi.org/10.1016/j.biomaterials.2013.12.052  Proc Natl Acad Sci U S A, 100:1484–9.
           47.  Marsano A, Conficconi C, Lemme M, et al., 2016, Beating      https://doi.org/10.1073/pnas.0235407100
               Heart on a Chip: A Novel Microfluidic Platform to Generate   59.  Agarwal A, Goss JA, Cho A, et al., 2013, Microfluidic Heart
               Functional 3D Cardiac Microtissues. Lab Chip, 16:599–610.  on a Chip for Higher Throughput Pharmacological Studies.
               https://doi.org/10.1039/c5lc01356a                  Lab Chip, 13:3599–608.
           48.  Chinali M, Simone GD, Roman MJ, et al., 2005, Left Atrial      https://doi.org/10.1039/c3lc50350j
               Systolic  Force  and  Cardiovascular  Outcome.  The  Strong   60.  Oyunbaatar NE, Shanmugasundaram  A,  Lee DW, 2019,
               Heart Study. Am J Hypertens, 18:1570–6.             Contractile Behaviors of Cardiac Muscle Cells on Mushroom-
           49.  Bajaj P,  Tang X, Saif  TA,  et al.,  2010,  Stiffness  of  the   Shaped  Micropillar  Arrays.  Colloids Surf B Biointerfaces,
               Substrate  Influences  the  Phenotype  of  Embryonic  Chicken   174:103–9.
               Cardiac Myocytes. J Biomed Mater Res Part A, 95A:1261–9.     https://doi.org/10.1016/j.colsurfb.2018.10.058
               https://doi.org/10.1002/jbm.a.32951             61.  Vandenburgh  H, Shansky J, Benesch-Lee  F,  et  al.,  2008,
           50.  Hong  SP,  Song  S, Cho  SW,  et  al.,  2017,  Generation  of   Drug-Screening Platform Based on the Contractility  of
               PDGFRα+ Cardioblasts  from Pluripotent  Stem Cells.  Sci   Tissue-Engineered Muscle. Muscle Nerve, 37:438–47.
               Rep, 7:41840.                                       https://doi.org/10.1002/mus.20931
           51.  Ruan JL, Tulloch NL, Razumova MV, et al., 2016, Mechanical   62.  Zhao Y, Wang EY, Davenport LH, et al., 2019, A Multimaterial
               Stress Conditioning and Electrical  Stimulation  Promote   Microphysiological  Platform Enabled by Rapid Casting of
               Contractility  and Force Maturation of Induced Pluripotent   Elastic Microwires. Adv Healthc Mater, 8:1801187.
               Stem Cell-Derived Human Cardiac  Tissue.  Circulation,      https://doi.org/10.1002/adhm.201801187
               134:1557–67.                                    63.  Mastikhina O, Moon BU, Williams K, et al., 2020, Human
               https://doi.org/10.1161/circulationaha.114.014998   Cardiac Fibrosis-on-a-Chip Model Recapitulates  Disease
           52.  Visone R,  Talò G, Occhetta  P,  et al., 2018, A Microscale   Hallmarks and Can Serve as a Platform for Drug Testing.
               Biomimetic Platform for Generation and Electro-Mechanical   Biomaterials, 233:119741.
               Stimulation  of 3D Cardiac  Microtissues. APL  Bioeng,      https://doi.org/10.1016/j.biomaterials.2019.119741
               2:046102.                                       64.  Chan V, Jeong JH, Bajaj P, et al., 2011, Multi-Material Bio-
               https://doi.org/10.1063/1.5037968                   Fabrication  of Hydrogel Cantilevers and  Actuators  with
           53.  Cho KW, Lee WH, Kim BS, et al., 2020, Sensors in Heart-on-  Stereolithography. Lab Chip, 12:88–98.
               a-Chip: A Review on Recent Progress. Talanta, 219:121269.     https://doi.org/10.1039/c1lc20688e
               https://doi.org/10.1016/j.talanta.2020.121269   65.  Fu F, Shang L, Chen Z,  et al., 2018, Bioinspired Living
           54.  Plotnikov SV, Sabass B, Schwarz U,  et al., 2014, High-  Structural Color Hydrogels. Sci Robot, 3:aar8580.
               Resolution Traction Force Microscopy.  Methods Cell Biol,   66.  Sun L, Chen Z, Bian F, et al., 2020, Bioinspired Soft Robotic
               123:367–94.                                         Caterpillar with Cardiomyocyte Drivers. Adv Funct Mater,
               https://doi.org/10.1016/b978-0-12-420138-5.00020-3  30:1907820.

           68                          International Journal of Bioprinting (2021)–Volume 7, Issue 3
   67   68   69   70   71   72   73   74   75   76   77