Page 102 - IJB-8-1
P. 102

Laser Additive Manufacturing of Zinc
           References                                              Biodegradation  Behavior, Mechanical  Properties, and
                                                                   Cytotoxicity of Biodegradable Zn-Mg Alloy. J Biomed Mater
           1.   Li  HF, Wang  PY, Lin  GC, et al., 2021, The  Role  of Rare   Res B Appl Biomater, 103:1632–40.
               Earth Elements in Biodegradable  Metals:  A  Review.  Acta   13.  Yang H,  Jia B, Zhang Z, et al., 2020, Alloying Design of
               Biomaterialia, 129:33–42.                           Biodegradable Zinc as Promising Bone Implants for Load-
               https://doi.org/10.1016/j.actbio.2021.05.014        Bearing Applications. Nat Commun, 11:1–16.
           2.   Bai L, Gong C, Chen XH, et al., 2019, Additive Manufacturing   14.  Du Y, Gu D, Xi L, et al., 2020, Laser Additive Manufacturing
               of Customized Metallic  Orthopedic Implants: Materials,   of  Bio-Inspired  Lattice  Structure:  Forming  Quality,
               Structures, and Surface Modifications. Metals, 9:P1004.  Microstructure and Energy Absorption Behavior. Mater Sci
               https://doi.org/10.3390/met9091004                  Eng A, 773:138857.
           3.   Shuai CJ, Xue LF, Gao CD, et al., 2018, Selective  Laser   15.  Gu DD, Shi XY, Poprawe R, et al., 2021, Material-Structure-
               Melting of Zn-Ag Alloys for Bone Repair: Microstructure,   Performance Integrated Laser-Metal Additive Manufacturing.
               Mechanical  Properties and Degradation Behaviour.  Virtual   Science, 372:932–6.
               Phys Prototyp, 13:146–54.                           https://doi.org/10.1126/science.abg1487
               https://doi.org/10.1080/17452759.2018.1458991   16.  Sing S,  Yeong  W, 2020, Laser Powder Bed Fusion for
           4.   Gu XN, Zhou WR, Zheng YF, et al., 2010, Corrosion Fatigue   Metal  Additive  Manufacturing:  Perspectives  on Recent
               Behaviors of two Biomedical Mg Alloys-AZ91D and WE43-  Developments. Virtual Phys Prototyp, 15:359–70.
               in Simulated Body Fluid. Acta Biomater, 6:4605–13.  17.  Harooni A, Nasiri AM, Gerlich AP, et al., 2016, Processing
               https://doi.org/10.1016/j.actbio.2010.07.026        Window Development for Laser Cladding Of Zirconium on
           5.   Zhao DW, Witte F, Lu FQ, et al., 2017, Current Status on   Zirconium Alloy. J Mater Process Technol, 230:263–71.
               Clinical  Applications  of  Magnesium-Based  Orthopaedic      https://doi.org/10.1016/j.jmatprotec.2015.11.028
               Implants: A Review from Clinical Translational Perspective.   18.  Liu FG, Lin X, Song K, et al., 2017, Microstructure  and
               Biomaterials, 112:287–302.                          Mechanical  Properties  of Laser Forming Repaired  300M
               https://doi.org/10.1016/j.biomaterials.2016.10.017  Steel. Acta Metallurgica Sin, 53:325–34.
           6.   Demir AG, Monguzzi L, Previtali B, 2017, Selective Laser      https://doi.org/10.11900/0412.1961.2016.00282
               Melting  of  Pure  Zn  with  High  Density  for  Biodegradable   19.  Narra  SP, Mittwede  PN,  Wolf  SD, et  al.,  2019, Additive
               Implant Manufacturing. Addit Manuf, 15:20–8.        Manufacturing in Total Joint Arthroplasty. Orthop Clin N Am,
           7.   Zheng  YF, Gu XN,  Witte  F, 2014, Biodegradable  Metals.   50:13–20.
               Mater Sci Eng R Rep, 77:1–34.                       https://doi.org/10.1016/j.ocl.2018.08.009
           8.   Shuai CJ, He CX, Xu L, et al.,  2018,  Wrapping  Effect  of   20.  Campbell  TA,  Ivanova OS,  2013, 3D  Printing of
               Secondary Phases on the Grains: Increased Corrosion Resistance   Multifunctional Nanocomposites. Nano Today, 8:119–20.
               of Mg-Al Alloys. Virtual Phys Prototyp, 13:292–300.     https://doi.org/10.1016/j.nantod.2012.12.002
               https://doi.org/10.1080/17452759.2018.1479969   21.  Zhao D,  Witte  F, Lu F, et al., 2017, Current Status on
           9.   Kraus T, Moszner F, Fischerauer S, et al., 2014, Biodegradable   Clinical  Applications  of  Magnesium-Based  Orthopaedic
               Fe-Based  Alloys for Use in Osteosynthesis: Outcome of   Implants: A Review from Clinical Translational Perspective.
               an In Vivo Study After 52 Weeks. Acta Biomater, 10:3346–53.  Biomaterials, 112:287–302.
               https://doi.org/10.1016/j.actbio.2014.04.007        https://doi.org/10.1016/j.biomaterials.2016.10.017
           10.  Shuai  CJ,  He  CX,  Qian  GW, et  al., 2021, Mechanically   22.  Hyer H, Zhou L, Mehta  A, et  al., 2021, Composition-
               Driving Supersaturated Fe-Mg Solid Solution for Bone   Dependent  Solidification  Cracking  of  Aluminum-Silicon
               Implant: Preparation, Solubility and Degradation. Compos B   Alloys during  Laser  Powder Bed Fusion.  Acta  Mater,
               Eng, 207:108564.                                    208:116698.
               https://doi.org/10.1016/j.compositesb.2020.108564     https://doi.org/10.1016/j.actamat.2021.116698
           11.  Hojyo S, Fukada T, 2016, Zinc Transporters and Signaling   23.  Zhou S, Liang YJ, Zhu Y, et al., 2021, Ultrashort-Time Liquid
               in Physiology and Pathogenesis.  Arch Biochem  Biophys,   Phase Sintering of High-Performance Fine-Grain Tungsten
               611:43–50.                                          Heavy Alloys by Laser Additive Manufacturing. J Mater Sci
               https://doi.org/10.1016/j.abb.2016.06.020           Technol, 90:30–6.
           12.  Gong H,  Wang K, Strich R, et al., 2015,  In Vitro   24.  Chakraborty A,  Tangestani R, Batmaz  R, et al., 2022, In-

           88                          International Journal of Bioprinting (2022)–Volume 8, Issue 1
   97   98   99   100   101   102   103   104   105   106   107