Page 107 - IJB-8-1
P. 107

Zhou, et al.
               of Au/Gd2O3/n-GaN Heterostructure  with  a  High-K Rare-  133.  Nasir S, Hussein MZ, Zainal Z, et al., 2018, Carbon-Based
               Earth Oxide Interlayer. Appl Surf Sci, 427:670–7.   Nanomaterials/Allotropes:  A  Glimpse  of  Their  Synthesis,
               https://doi.org/10.1016/j.apsusc.2017.09.016        Properties and Some Applications. Materials, 11:295.
           122.  Tehranchi A, Yin B, Curtin WA, 2018, Solute Strengthening   134.  Li  Y, Li  W, Bobbert  F, et  al., 2020, Corrosion Fatigue
               of Basal Slip in Mg Alloys. Acta Mater, 151:56–66.  Behavior of Additively Manufactured Biodegradable Porous
               https://doi.org/10.1016/j.actamat.2018.02.056       Zinc. Acta Biomater, 106:439–49.
           123.  Gayathri  J,  Elansezhian  R,  2020,  Influence  of  Dual   135.  Li Y, Jahr H, Zhang X, et al., 2019, Biodegradation-Affected
               Reinforcement  (Nano CuO Plus Reused  Spent  Alumina   Fatigue  Behavior of  Additively Manufactured  Porous
               Catalyst)  on Microstructure  and Mechanical  Properties   Magnesium. Addit Manuf, 28:299–311.
               of  Aluminium  Metal Matrix Composite.  J  Alloys Compd,   136.  Li HF, Xie XH, Zheng  YF, et al., 2015, Development  of
               829:154538.                                         Biodegradable Zn-1X Binary Alloys with Nutrient Alloying
               https://doi.org/10.1016/j.jallcom.2020.154538       Elements Mg, Ca and Sr. Sci Rep, 5:10719.
           124.  Sahu R,  Anup S, 2016, Molecular  Dynamics Study of      https://doi.org/10.1038/srep12190
               Toughening Mechanisms in Nano-Composites as a Function   137.  Qian  G,  Zhang  L,  Wang  G, et  al., 2021, 3D Printed Zn-
               of Structural  Arrangement  of Reinforcements.  Mater Des,   Doped Mesoporous Silica-Incorporated Poly-L-Lactic Acid
               100:132–40.                                         Scaffolds for Bone Repair. Int J Bioprint, 7:346.
               https://doi.org/10.1016/j.matdes.2016.03.076    138.  Qian  G,  Lu  T,  Zhang  J, et  al., 2020, Promoting Bone
           125.  Li  YL,  Wang  SJ,  Wang  Q,  2017,  A  molecular  Dynamics   Regeneration  of Calcium  Phosphate Cement  by  Addition
               Simulation  Study on Enhancement of Mechanical  and   of  PLGA  Microspheres  and  Zinc  Silicate  Via  Synergistic
               Tribological  Properties  of Polymer Composites  by   Effect of In Situ Pore Generation, Bioactive Ion Stimulation
               Introduction of Graphene. Carbon, 111:538–45.       and Macrophage Immunomodulation.  Appl Mater Today,
               https://doi.org/10.1016/j.carbon.2016.10.039        19:100615.
           126.  Yang  Y,  Cheng  Y,  Yang  M, et  al., 2021,  Semi-Coherent   139.  Li  Y,  Pavanram P, Zhou J, et al.,  2020, Additively
               Interface Strengthens Graphene/Zinc Scaffolds. Mater Today   Manufactured Biodegradable  Porous  Zinc.  Acta Biomater,
               Nano, 17:100163.                                    101:609–23.
           127.  Chu K, Wang F, Li Y B, et al., 2018, Interface and Mechanical/  140.  Ralston K, Birbilis  N, Davies  C, 2010, Revealing  the
               Thermal  Properties of Graphene/Copper Composite with   Relationship  between Grain Size and Corrosion Rate  of
               Mo2C Nanoparticles  Grown on Graphene.  Composites A   Metals. Scr Mater, 63:1201–4.
               Appl Sci Manuf, 109:267–79.                     141.  Schultze JW, Davepon B, Karman F, et al., 2013, Corrosion
           128.  Zhang X, Li S, Pan B, et al., 2019, Regulation  of   and Passivation in Nanoscopic and Microscopic Dimensions:
               Interface  between Carbon Nanotubes-Aluminum and its   The Influence of Grains and Grain Boundaries. Br Corros J,
               Strengthening Effect in CNTs Reinforced Aluminum Matrix   39:45–52.
               Nanocomposites. Carbon, 155:686–96.             142.  Pu Z., Song GL, Yang S, et al., 2012, Grain Refined and Basal
           129.  Yang  Y, Cheng  Y, Peng S, et al., 2021, Microstructure   Textured  Surface  Produced  by Burnishing  for Improved
               Evolution and Texture Tailoring of Reduced Graphene Oxide   Corrosion Performance  of  AZ31B Mg  Alloy.  Corros Sci,
               Reinforced Zn Scaffold. Bioact Mater, 6:1230–41.    57:192–201.
           130.  Chengde G,  Yao M,  Shuai  C.,  et al., 2019, Nano-SiC   143.  Jiang  B,  Xiang  Q,  Atrens  A, et al.,  2017,  Influence  of
               Reinforced Zn Biocomposites Prepared Via Laser Melting:   Crystallographic  Texture  and Grain Size  on the  Corrosion
               Microstructure, Mechanical Properties and Biodegradability.   Behaviour of As-Extruded Mg Alloy AZ31 Sheets. Corros
               J Mater Sci Technol, 35:2608–17.                    Sci, 126:374–80.
           131.  Yang Y, He C, Dianyu E, et al., 2020, Mg  Bone Implant:   144.  Liu X, Sun J, Qiu K, et al., 2016, Effects of Alloying Elements
               Features, Developments and Perspectives.  Mater Des,   (Ca and Sr) on Microstructure, Mechanical Property and In
               185:108259.                                         Vitro Corrosion Behavior of Biodegradable Zn-1.5 Mg Alloy.
           132.  Sureshbabu  AR, Kurapati  R, Russier J, et al., 2015,   J Alloys Compd, 664:444–52.
               Degradation-by-Design:   Surface   Modification   with   145.  Yue  R,  Huang  H, Ke  G,  et  al.,  2017,  Microstructure,
               Functional  Substrates  that  Enhance  the  Enzymatic   Mechanical Properties and In Vitro Degradation Behavior of
               Degradation of Carbon Nanotubes. Biomaterials, 72:20–8.  Novel Zn-Cu-Fe Alloys. Mater Charact, 134:114–22.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1        93
   102   103   104   105   106   107   108   109   110   111   112