Page 194 - IJB-8-1
P. 194

Analyzing Cell-Scaffold Interaction through Unsupervised 3D Nuclei Segmentation
           Acknowledgments                                         Nuclei  Based  on  Concave  Curve  Expansion.  J  Microsc,

           This  work  was  financially  supported  by  Key  Program   251:57–67.
           Special  Fund  in  Xi’an  Jiaotong-Liverpool  University      https://doi.org/10.1111/jmi.12043
           under Grant KSF-E-37.                               10.  Xing F, Yang L, 2016. Robust Nucleus/Cell Detection and
                                                                   Segmentation in Digital Pathology and Microscopy Images:
           Conflict of interest                                    A Comprehensive Review. IEEE Rev Biomed Eng, 9:234–63.
           The authors declare that there is no conflict of interest.     https://doi.org/10.1109/RBME.2016.2515127
                                                               11.  Yang Z, Bogovic JA, Carass A, et al. 2013. Automatic Cell
           Author contributions                                    Segmentation  in  Fluorescence  Images  of  Confluent  Cell
           K.Y.,  L.J.,  and  H.L.  designed  the  overall  experimental   Monolayers  Using  Multi-object  Geometric  Deformable
           plan  and  performed  experiments.  K.Y.  interpreted  data   Model. Proc SPIE Int Soc Opt Eng, 8669:2006603.
           and  wrote  the  manuscript  with  support  from  D.H.  and      https://doi.org/10.1117/12.2006603
           K.H. J.S. supervised the project and conceived the original   12.  McQuin  C,  Goodman  A,  Chernyshev  V,  et al.  2018.
           idea. All authors read and approved the manuscript.
                                                                   CellProfiler  3.0:  Next-generation  Image  Processing  for
           References                                              Biology. PLoS Biol, 16:e2005970.
                                                                   https://doi.org/10.1371/journal.pbio.2005970
           1.   Ravi M, Paramesh V, Kaviya SR., et al. 2015. 3D Cell Culture   13.  Rizk A, Paul G, Incardona P, et al., 2014. Segmentation and
               Systems:  Advantages  and  Applications.  J  Cell Physiol,   Quantification  of  Subcellular  Structures  in  Fluorescence
               230:16–26.                                          Microscopy Images Using Squassh. Nat Protoc, 9:6–596.
               https://doi.org/10.1002/jcp.24683                   https://doi.org/10.1038/nprot.2014.037
           2.   Pampaloni  F,  Reynaud  EG,  Stelzer  EH,  2007.  The  Third   14.  Kumar  N,  Verma  R,  Sharma  S,  et al.,  2017.  A  Dataset
               Dimension Bridges the Gap between Cell Culture and Live   and  a  Technique  for  Generalized  Nuclear  Segmentation
               Tissue. Nat Rev Mol Cell Biol, 8:839–45.            for  Computational  Pathology.  IEEE Trans Med Imaging,
               https://doi.org/10.1038/nrm2236                     36:1550–60.
           3.   Paddock  SW,  1999.  Confocal  Laser  Scanning  Microscopy.   15.  Xing F, Xie Y, Yang L, 2015. An Automatic Learning-based
               Biotechniques, 27:992–1004.                         Framework for Robust Nucleus Segmentation. IEEE Trans
               https://doi.org/10.2144/99275ov01                   Med Imaging, 35:550–66.
           4.   Al-Kofahi  Y,  Zaltsman A,  Graves  R,  et  al.  2018. A  Deep   16.  Dunn  KW,  Fu  C,  Ho  DJ,  et al.  2019.  DeepSynth:  Three-
               Learning-based  Algorithm  for  2-D  Cell  Segmentation  in   dimensional  Nuclear  Segmentation  of  Biological  Images
               Microscopy Images. BMC Bioinformatics, 19:1–11.     Using Neural Networks Trained with Synthetic Data. Sci Rep,
           5.   Vahadane  A  and  Sethi  A,  2013.  Towards  Generalized   9:1–15.
               Nuclear  Segmentation  in  Histological  Images.  In:   17.  Liu D, Zhang D, Song Y, et al. 2020. Unsupervised Instance
               13   IEEE  International  Conference  on  Bioinformatics  and   Segmentation in Microscopy Images Via Panoptic Domain
                th
               Bioengineering. p1-4.                               Adaptation  and Task  Re-weighting.  In:  Proceedings  of  the
           6.   Xue JH, Titterington DM, 2011. t-Tests, f-Tests and Otsu’s   IEEE/CVF  Conference  on  Computer  Vision  and  Pattern
               methods  for  image  thresholding.  IEEE Trans Image Proc,   Recognition. p4243-4252.
               20:2392–96.                                     18.  Hou  L,  Agarwal  A,  Samaras  D,  et al.,  2019.  Robust
               https://doi.org/10.1109/TIP.2011.2114358            Histopathology Image Analysis: To Label or to Synthesize?
           7.   Jie S, Hong GS, Rahman M, et al., 2002. Feature Extraction   In: Proceedings of the IEEE/CVF Conference on Computer
               and  Selection  in  tool  Condition  Monitoring  System.  In:   Vision and Pattern Recognition. p8533-8542.
               Australian Joint Conference on Artificial Intelligence. Berlin,   19.  Yang J, Dvornek NC, Zhang F, et al., 2019. Unsupervised
               Heidelberg: Springer. p487-497.                     Domain  Adaptation  Via  Disentangled  Representations:
           8.   Veta M, Van Diest PJ, Kornegoor R, et al. 2013. Automatic   Application  to  Cross-modality  Liver  Segmentation.  In:
               Nuclei  Segmentation  in  H&E  Stained  Breast  Cancer   International Conference on Medical Image Computing and
               Histopathology Images. PLoS One, 8:e70221.          Computer-Assisted Intervention. p255-263.
               https://doi.org/10.1371/journal.pone.0070221    20.  Sun J, Jing L, Liu H, et al., 2020. Generating Nanotopography
           9.   Zhang C, Sun C, Pham TD, 2013. Segmentation of Clustered   on  PCL  Microfiber  Surface  for  Better  Cell-Scaffold
           180                         International Journal of Bioprinting (2022)–Volume 8, Issue 1
   189   190   191   192   193   194   195   196   197   198   199