Page 130 - IJB-8-2
P. 130
Microstructured Calcium Phosphate Ceramics Scaffolds by Material Extrusion
7. Marques A, Miranda G, Silva F, et al., 2021, Review on 29:1703155.
Current Limits and Potentialities of Technologies for https://doi.org/10.1002/adma.201703155
Biomedical Ceramic Scaffolds Production. J Biomed Mater 18. Nelson I, Naleway SE, 2019, Intrinsic and Extrinsic Control
Res Part B Appl Biomater, 109B:1–17. of Freeze Casting. J Mater Res Technol, 8:2372–85.
https://doi.org/10.1002/jbm.b.34706 https://doi.org/10.1016/j.jmrt.2018.11.011
8. Li T, Chang J, Zhu Y, et al., 2020, 3D Printing of Bioinspired 19. Deville S, Saiz E, Tomsia AP, 2006, Freeze Casting of
Biomaterials for Tissue Regeneration. Adv Healthc Mater, Hydroxyapatite Scaffolds for Bone Tissue Engineering.
9:1–17. Biomaterials, 27:5480–9.
https://doi.org/10.1002/adhm.202000208 https://doi.org/10.1016/j.biomaterials.2006.06.028
9. Wen Y, Xun S, Haoye M, et al., 2017, 3D Printed Porous 20. Bouville F, Portuguez E, Chang Y, et al., 2014, Templated
Ceramic Scaffolds for Bone Tissue Engineering: A Review. Grain Growth in Macroporous Materials. J Am Ceram Soc,
Biomater Sci, 5:1690–8. 97:1736–42.
https://doi.org/10.1039/C7BM00315C https://doi.org/10.1111/jace.12976
10. Lin K, Sheikh R, Romanazzo S, et al., 2019, 3D Printing of 21. Bai H, Walsh F, Gludovatz B, et al., 2016, Bioinspired
Bioceramic Scaffolds Barriers to the Clinical Translation: Hydroxyapatite/Poly(methyl methacrylate) Composite with
From Promise to Reality, and Future Perspectives. Materials, a Nacre-Mimetic Architecture by a Bidirectional Freezing
12:2660. Method. Adv Mater, 28:50–6.
https://doi.org/10.3390/ma12172660 https://doi.org/10.1002/adma.201504313
11. Le Ferrand H, Athanasiou CE, 2020, A Materials Perspective 22. Gao HL, Chen SM, Mao LB, et al., 2017, Mass Production of
on the Design of Damage-Resilient Bone Implants Through Bulk Artificial Nacre with Excellent Mechanical Properties.
Additive/Advanced Manufacturing. JOM, 72(3):1195–210. Nat Commun, 8:287.
https://doi.org/10.1007/s11837-019-03999-3 https://doi.org/10.1038/s41467-017-00392-z
12. Rogina A, Antunović M, Milovac D, 2019, Biomimetic 23. Chen SM, Gao HL, Zhu YB, et al., 2018, Biomimetic Twisted
Design of Bone Substitutes Based on Cuttlefish Bone-derived Plywood Structural Materials. Natl Sci Rev, 5:703–14.
Hydroxyapatite and Biodegradable Polymers. J Biomed https://doi.org/10.1093/nsr/nwy080
Mater Res Part B Appl Biomater, 107B:197–204. 24. Kumar A, Kargozar S, Baino F, et al., 2019, Additive
https://doi.org/10.1002/jbm.b.34111 Manufacturing Methods for Producing Hydroxyapatite and
13. Bigoni D, Cavuoto R, Misseroni D, et al., 2020, Ceramics Hydroxyapatite-Based Composite Scaffolds: A Review.
with the Signature of Wood: A Mechanical Insight. Mater Front Mater, 6:1–20.
Today Bio, 5:100032. https://doi.org/10.3389/fmats.2019.00313
https://doi.org/10.1016/j.mtbio.2019.100032 25. Chen S, Jang TS, Pan HM, et al., 2020, 3D Freeform Printing
14. Sprio S, Panseri S, Montesi M, et al., 2020, Hierarchical of Nanocomposite Hydrogels through in situ Precipitation in
porosity inherited by natural sources affects the mechanical Reactive Viscous Fluid. Int J Bioprint, 6:29–49.
and biological behaviour of bone scaffolds. Journal of the https://doi.org/10.18063/ijb.v6i2.258
European Ceramic Society, 40: 1717-1727. 26. Martin JJ, Fiore BE, Erb RM, 2015, Designing Bioinspired
https://doi.org/10.1016/j.jeurceramsoc.2019.11.015 Composite Reinforcement Architectures via 3D Magnetic
15. Tampieri A, Sprio S, Sandri M, et al., 2011, Mimicking Natural Printing. Nat Commun, 6:1–7.
Bio-mineralization Processes: A New Tool for Osteochondral https://doi.org/10.1038/ncomms9641
Scaffold Development. Trends Biotechnol, 29:526–35. 27. Feilden E, Ferraro C, Zhang Q, et al., 2017, 3D Printing
https://doi.org/10.1016/j.tibtech.2011.04.011 Bioinspired Ceramic Composites. Sci Rep, 7:1–9.
16. Ruffini A, Sprio S, Tampieri A, 2013, Study of the https://doi.org/10.1038/s41598-017-14236-9
Hydrothermal Transformation of Wood-derived Calcium 28. Fu Z, Freihart M, Wahl L, et al., 2017, Micro-and Macroscopic
Carbonate into 3D Hierarchically Organized Hydroxyapatite. Design of Alumina Ceramics by Robocasting. J Eur Ceram
Chem Eng J, 217:150–8. Soc, 37:3115–24.
https://doi.org/10.1016/j.cej.2012.11.107 https://doi.org/10.1016/j.jeurceramsoc.2017.03.052
17. Cheng Q, Huang C, Tomsia AP, 2017, Freeze Casting for 29. Le Ferrand H, 2020, Pressure-Less Processing of Ceramics
Assembling Bioinspired Structural Materials. Adv Mater, with Deliberate Elongated Grain Orientation and Size. In:
122 International Journal of Bioprinting (2022)–Volume 8, Issue 2

