Page 130 - IJB-8-2
P. 130

Microstructured Calcium Phosphate Ceramics Scaffolds by Material Extrusion
           7.   Marques A,  Miranda  G,  Silva  F,  et al.,  2021,  Review  on   29:1703155.
               Current  Limits  and  Potentialities  of  Technologies  for      https://doi.org/10.1002/adma.201703155
               Biomedical Ceramic Scaffolds Production. J Biomed Mater   18.  Nelson I, Naleway SE, 2019, Intrinsic and Extrinsic Control
               Res Part B Appl Biomater, 109B:1–17.                of Freeze Casting. J Mater Res Technol, 8:2372–85.
               https://doi.org/10.1002/jbm.b.34706                 https://doi.org/10.1016/j.jmrt.2018.11.011
           8.   Li T, Chang J, Zhu Y, et al., 2020, 3D Printing of Bioinspired   19.  Deville  S,  Saiz  E,  Tomsia  AP,  2006,  Freeze  Casting  of
               Biomaterials  for  Tissue  Regeneration.  Adv  Healthc  Mater,   Hydroxyapatite  Scaffolds  for  Bone  Tissue  Engineering.
               9:1–17.                                             Biomaterials, 27:5480–9.
               https://doi.org/10.1002/adhm.202000208              https://doi.org/10.1016/j.biomaterials.2006.06.028
           9.   Wen Y, Xun S, Haoye M, et al., 2017, 3D Printed Porous   20.  Bouville F, Portuguez E, Chang Y, et al., 2014, Templated
               Ceramic Scaffolds for Bone Tissue Engineering: A Review.   Grain Growth in Macroporous Materials. J Am Ceram Soc,
               Biomater Sci, 5:1690–8.                             97:1736–42.
               https://doi.org/10.1039/C7BM00315C                  https://doi.org/10.1111/jace.12976
           10.  Lin K, Sheikh R, Romanazzo S, et al., 2019, 3D Printing of   21.  Bai  H,  Walsh  F,  Gludovatz  B, et al.,  2016,  Bioinspired
               Bioceramic  Scaffolds  Barriers  to  the  Clinical  Translation:   Hydroxyapatite/Poly(methyl  methacrylate)  Composite  with
               From Promise to Reality, and Future Perspectives. Materials,   a  Nacre-Mimetic  Architecture  by  a  Bidirectional  Freezing
               12:2660.                                            Method. Adv Mater, 28:50–6.
               https://doi.org/10.3390/ma12172660                  https://doi.org/10.1002/adma.201504313
           11.  Le Ferrand H, Athanasiou CE, 2020, A Materials Perspective   22.  Gao HL, Chen SM, Mao LB, et al., 2017, Mass Production of
               on the Design of Damage-Resilient Bone Implants Through   Bulk Artificial Nacre with Excellent Mechanical Properties.
               Additive/Advanced Manufacturing. JOM, 72(3):1195–210.  Nat Commun, 8:287.
               https://doi.org/10.1007/s11837-019-03999-3          https://doi.org/10.1038/s41467-017-00392-z
           12.  Rogina  A,  Antunović  M,  Milovac  D,  2019,  Biomimetic   23.  Chen SM, Gao HL, Zhu YB, et al., 2018, Biomimetic Twisted
               Design of Bone Substitutes Based on Cuttlefish Bone-derived   Plywood Structural Materials. Natl Sci Rev, 5:703–14.
               Hydroxyapatite  and  Biodegradable  Polymers.  J  Biomed      https://doi.org/10.1093/nsr/nwy080
               Mater Res Part B Appl Biomater, 107B:197–204.   24.  Kumar  A,  Kargozar  S,  Baino  F, et al.,  2019,  Additive
               https://doi.org/10.1002/jbm.b.34111                 Manufacturing  Methods  for  Producing  Hydroxyapatite  and
           13.  Bigoni D, Cavuoto R, Misseroni D, et al., 2020, Ceramics   Hydroxyapatite-Based  Composite  Scaffolds:  A  Review.
               with  the  Signature  of  Wood: A  Mechanical  Insight.  Mater   Front Mater, 6:1–20.
               Today Bio, 5:100032.                                https://doi.org/10.3389/fmats.2019.00313
               https://doi.org/10.1016/j.mtbio.2019.100032     25.  Chen S, Jang TS, Pan HM, et al., 2020, 3D Freeform Printing
           14.  Sprio  S,  Panseri  S,  Montesi  M, et al.,  2020,  Hierarchical   of Nanocomposite Hydrogels through in situ Precipitation in
               porosity inherited by natural sources affects the mechanical   Reactive Viscous Fluid. Int J Bioprint, 6:29–49.
               and  biological  behaviour  of  bone  scaffolds.  Journal of the      https://doi.org/10.18063/ijb.v6i2.258
               European Ceramic Society, 40: 1717-1727.        26.  Martin JJ, Fiore BE, Erb RM, 2015, Designing Bioinspired
               https://doi.org/10.1016/j.jeurceramsoc.2019.11.015  Composite  Reinforcement  Architectures  via  3D  Magnetic
           15.  Tampieri A, Sprio S, Sandri M, et al., 2011, Mimicking Natural   Printing. Nat Commun, 6:1–7.
               Bio-mineralization Processes: A New Tool for Osteochondral      https://doi.org/10.1038/ncomms9641
               Scaffold Development. Trends Biotechnol, 29:526–35.  27.  Feilden  E,  Ferraro  C,  Zhang  Q, et al.,  2017,  3D  Printing
               https://doi.org/10.1016/j.tibtech.2011.04.011       Bioinspired Ceramic Composites. Sci Rep, 7:1–9.
           16.  Ruffini  A,  Sprio  S,  Tampieri  A,  2013,  Study  of  the      https://doi.org/10.1038/s41598-017-14236-9
               Hydrothermal  Transformation  of  Wood-derived  Calcium   28.  Fu Z, Freihart M, Wahl L, et al., 2017, Micro-and Macroscopic
               Carbonate into 3D Hierarchically Organized Hydroxyapatite.   Design of Alumina Ceramics by Robocasting. J Eur Ceram
               Chem Eng J, 217:150–8.                              Soc, 37:3115–24.
               https://doi.org/10.1016/j.cej.2012.11.107           https://doi.org/10.1016/j.jeurceramsoc.2017.03.052
           17.  Cheng  Q,  Huang  C,  Tomsia AP,  2017,  Freeze  Casting  for   29.  Le Ferrand H, 2020, Pressure-Less Processing of Ceramics
               Assembling  Bioinspired  Structural  Materials.  Adv  Mater,   with  Deliberate  Elongated  Grain  Orientation  and  Size.  In:

           122                         International Journal of Bioprinting (2022)–Volume 8, Issue 2
   125   126   127   128   129   130   131   132   133   134   135