Page 131 - IJB-8-2
P. 131

Dee, et al.
               Minerals,  Metals  and  Materials  Series.  Berlin/Heidelberg:   Pyrophosphate  Stimulates  Differentiation,  Matrix  Gene
               Springer. p45–56.                                   Expression and Alkaline Phosphatase Activity in Osteoblasts.
               https://doi.org/10.1007/978-3-030-36552-3_5         PLoS One, 11:e0163530.
           30.  Zocca  A,  Colombo  P,  Gomes  CM, et  al.,  2015,  Additive      https://doi.org/10.1371/journal.pone.0163530
               Manufacturing  of  Ceramics:  Issues,  Potentialities,  and   40.  Grover LM, Wright AJ, Gbureck U, et al., 2013, The Effect
               Opportunities. J Ame Ceram Soc, 98:1983–2001.       of Amorphous Pyrophosphate on Calcium Phosphate Cement
               https://doi.org/10.1111/jace.13700                  Resorption and Bone Generation. Biomaterials, 34:6631–7.
           31.  Mandel  S,  Tas  AC,  2010,  Brushite  (CaHPO ·2H O)      https://doi.org/10.1016/j.biomaterials.2013.05.001
                                                     4  2
               to   Octacalcium   Phosphate   (Ca (HPO ) (PO ) ·5H O)   41.  Ribeiro A, Blokzijl MM, Levato R, et al., 2018, Assessing
                                          8    4 2  4 4  2
               Transformation in DMEM Solutions at 36.5 °C. Mater Sci   Bioink Shape Fidelity to Aid Material Development in 3D
               Eng C, 30:245–54.                                   Bioprinting. Biofabrication, 10:14102.
               https://doi.org/10.1016/j.msec.2009.10.009          https://doi.org/10.1088/1758-5090/aa90e2
           32.  Anastasiou  AD,  Thomson  CL,  Hussain  SA, et  al.,  2016,   42.  Schwab A,  Levato  R,  D’Este  M, et al.,  2020,  Printability
               Sintering of calcium phosphates with a femtosecond pulsed   and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev,
               laser for hard tissue engineering. Mater Des, 101:346–54.  120:11028–55.
               https://doi.org/10.1016/j.matdes.2016.03.159        https://doi.org/10.1021/acs.chemrev.0c00084
           33.  M’Barki A, Bocquet L, Stevenson A, 2017, Linking Rheology   43.  Smay  JE,  Cesarano  J,  Lewis  JA,  2002,  Colloidal  Inks  for
               and Printability for Dense and Strong Ceramics by Direct Ink   Directed  Assembly  of  3-D  Periodic  Structures.  Langmuir,
               Writing. Sci Rep, 7:1–10.                           18:5429–37.
               https://doi.org/10.1038/s41598-017-06115-0          https://doi.org/10.1021/la0257135
           34.  del-Mazo-Barbara  L,  Ginebra  MP,  2021,  Rheological   44.  Li  Z,  Hojati  M,  Wu  Z, et al.,  2020,  Fresh  and  Hardened
               Characterisation of Ceramic Inks for 3D Direct Ink Writing:   Properties  of  Extrusion-based  3D-printed  Cementitious
               A Review. J Eur Ceram Soc, 41:18–33.                Materials: A Review. Sustainability (Switzerland), 12:1–33.
               https://doi.org/10.1016/j.jeurceramsoc.2021.08.031     https://doi.org/10.3390/su12145628
           35.  Adcock  D,  McDowall  I,  1957,  The  Mechanism  of  Filter   45.  Liu  Q,  Lu  WF,  Zhai  W,  2021,  Toward  Stronger  Robocast
               Pressing and Slip Casting. J Am Ceram Soc, 40:355–60.  Calcium Phosphate Scaffolds for Bone Tissue Engineering:
               https://doi.org/10.1111/j.1151-2916.1957.tb12552.x  A  Mini-review  and  Meta-analysis.  Mater Sci Eng C,
           36.  Hu F, Mikolajczyk T, Pimenov DY, et al., 2021, Extrusion-  107:2411–502.
               based 3d Printing of Ceramic Pastes: Mathematical Modeling      https://doi.org/10.1016/j.msec.2021.112578
               and In Situ Shaping Retention Approach. Materials, 14:1–22.  46.  Behera RP, Le Ferrand H, 2021, Impact-resistant Materials
               https://doi.org/10.3390/ma14051137                  Inspired  by  the  Mantis  Shrimp’s  Dactyl  Club.  Matter,
           37.  Hausmann MK, Rühs PA, Siqueira G, et al., 2018, Dynamics   4:2831–49.
               of Cellulose Nanocrystal Alignment during 3D Printing. ACS      https://doi.org/10.1016/j.matt.2021.07.012
               Nano, 12:6926–37.                               47.  Houmard  M,  Fu  Q,  Saiz  E,  et  al.,  2012,  Sol-gel  Method
               https://doi.org/10.1021/acsnano.8b02366             to  Fabricate  CaP  Scaffolds  by  Robocasting  for  Tissue
           38.  Windarti  T,  Taslimah,  Haris  A, et  al.,  2017,  Synthesis  of   Engineering. J Mater Sci Mater Med, 23:921–30.
               β-Calcium Pyrophosphate by sol-gel method. IOP Conf Ser      https://doi.org/10.1007/s10856-012-4561-2
               Mater Sci Eng, 172:012058.                      48.  Huang  H,  Lu  X,  2017,  An  Ellipsoidal  Particle  in  Tube
               https://doi.org/10.1088/1757-899X/172/1/012058      Poiseuille Flow. J Fluid Mech, 822:664–88.
           39.  Pujari-Palmer  M,  Pujari-Palmer  S,  Lu  X, et al.,  2016,      https://doi.org/10.1017/jfm.2017.298





                                                               Publisher’s note
                                                               Whioce  Publishing  remains  neutral  with  regard  to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 2       123
   126   127   128   129   130   131   132   133   134   135   136