Page 153 - IJB-8-2
P. 153

Kanaki, et al.
           3.   Kochhar  JS,  Quek  TC,  Soon  WJ,  et al.,  2013,  Effect  of   PK  of  Therapeutically  Relevant  Doses.  Pharmaceutics,
               Microneedle  Geometry  and Supporting  Substrate  on   6:220–34.
               Microneedle  Array  Penetration  into  Skin.  J  Pharm Sci,      https://doi.org/10.3390/pharmaceutics6020220
               102:4100–8.                                     14.  Chen X, Prow TW, Crichton ML, et al., 2009, Dry-coated
               https://doi.org/10.1002/jps.23724                   Microprojection  Array Patches for  Targeted  Delivery
           4.   Larrañeta  E,  Moore  J,  Vicente-Pérez  EM,  et  al.,  2014,  A   of  Immune-therapeutics  to  the  Skin.  J  Control Release,
               Proposed Model Membrane and Test Method for Microneedle   139:212–20.
               Insertion Studies. Int J Pharm, 472:65–73.          https://doi.org/10.1016/j.jconrel.2009.06.029
               https://doi.org/10.1016/j.ijpharm.2014.05.042   15.  Chen  X,  Fernando  GJ,  Crichton  ML,  et al.,  2011,
           5.   Larrañeta  E,  Lutton  RE,  Woolfson  AD,  et  al.,  2016,   Improving the Reach of  Vaccines to Low-resource
               Microneedle Arrays as  Transdermal  and  Intradermal  Drug   Regions, with a Needle-free  Vaccine Delivery Device
               Delivery  Systems:  Materials  Science,  Manufacture  and   and  Long-term  Thermostabilization.  J  Control Release,
               Commercial Development. Mater Sci Eng R Rep, 104:1–32.  152:349–55.
               https://doi.org/10.1016/j.mser.2016.03.001          https://doi.org/10.1016/j.jconrel.2011.02.026
           6.   Ziesmer J, Tajpara P, Hempel NJ, et al., 2021, Vancomycin-  16.  McGrath  MG,  Vrdoljak  A,  O’Mahony  C,  et al.,  2011,
               Loaded  Microneedle  Arrays against  Methicillin-Resistant   Determination of Parameters for Successful Spray Coating of
               Staphylococcus Aureus Skin Infections. Adv Mater Technol,   Silicon Microneedle Arrays. Int J Pharm, 415:140–9.
               6:2001307.                                          https://doi.org/10.1016/j.ijpharm.2011.05.064
               https://doi.org/10.1002/admt.202001307          17.  Vrdoljak A,  McGrath  MG,  Carey  JB,  et  al.,  2012,  Coated
           7.   Gill  HS,  Prausnitz  MR,  2007,  Coated  Microneedles  for   Microneedle  Arrays for  Transcutaneous Delivery  of Live
               Transdermal Delivery. J Control Release, 117:227–37.  Virus Vaccines. J Control Release, 159:34–42.
               https://doi.org/10.1016/j.jconrel.2006.10.017       https://doi.org/10.1016/j.jconrel.2011.12.026
           8.   Yang Y, Kalluri H, Banga AK, 2011, Effects of Chemical and   18.  Bierwagen  GP,  1992.  Film  Coating  Technologies  and
               Physical Enhancement Techniques on Transdermal Delivery   Adhesion. Electrochim Acta. 37:1471–8.
               of Cyanocobalamin (Vitamin B12) In Vitro. Pharmaceutics,   19.  Gill  HS,  Prausnitz  MR,  2007,  Coating  Formulations  for
               3:474–484.                                          Microneedles. Pharm Res, 24:1369–80.
           9.   Vranic E, Tucak A, Sirbubalo J, et al., 2019, Microneedle-     https://doi.org/10.1007/s11095-007-9286-4
               based Sensor Systems for Real-time Continuous Transdermal   20.  Alhnan MA, Okwuosa TC, Sadia M, et al., 2016, Emergence
               Monitoring  of  Analytes  in  Body  Fluids.  Vol.  73.  Cham,   of 3D Printed Dosage Forms: Opportunities and Challenges.
               Switzerland:  Proceedings  of the  CMBEBIH 2019, IFMBE   Pharm Res, 33:1817.
               Proceedings, Springer, p167–172.                    https://doi.org/10.1007/s11095-016-1933-1
           10.  Pearton M, Saller V, Coulman SA, et al., 2012, Microneedle   21.  Uddin  MJ,  Scoutaris  N,  Klepetsanis  P,  et al.,  2015,  Inkjet
               Delivery of Plasmid DNA to Living Human Skin: Formulation   Printing  of  Transdermal  Microneedles  for the  Delivery  of
               Coating,  Skin  Insertion  and  Gene  Expression.  J  Control   Anticancer Agents. Int J Pharm, 494:593–602.
               Release, 160:561–9.                                 https://doi.org/10.1016/j.ijpharm.2015.01.038
               https://doi.org/10.1016/j.jconrel.2012.04.005   22.  Ross S, Scoutaris N, Lamprou D, et al., 2015, Inkjet Printing
           11.  Zhao X, Coulman SA, Hanna SJ, et al., 2017, Formulation   of  Insulin  Microneedles  for  Transdermal  Delivery.  Drug
               of Hydrophobic Peptides  for Skin Delivery  Via  Coated   Deliv Transl Res, 5:451–61.
               Microneedles. J Control Release, 265:2–13.          https://doi.org/10.1007/s13346-015-0251-1
               https://doi.org/10.1016/j.jconrel.2017.03.015   23.  Uddin  MJ,  Scoutaris  N,  Economidou  SN,  et  al.,  2020,
           12.  Tuan-Mahmood  TM,  McCrudden  MT,  Torrisi  BM,  et al.,   3D  Printed Microneedles for  Anticancer  Therapy of Skin
               2013, Microneedles for Intradermal and Transdermal Drug   Tumours. Mater Sci Eng C Mater Biol Appl, 107:110248.
               Delivery. Eur J Pharm Sci, 50:623–37.               https://doi.org/10.1016/j.msec.2019.110248
               https://doi.org/10.1016/j.ejps.2013.05.005      24.  Tarbox TN, Watts AB,  Cui  Z,  et al.,  2018, An  Update  on
           13.  Ameri M, Kadkhodayan M, Nguyen J, et al., 2014, Human   Coating/Manufacturing  Techniques  of  Microneedles.  Drug
               Growth Hormone Delivery with a Microneedle Transdermal   Deliv Transl Res, 8:1828–43.
               System: Preclinical Formulation, Stability, Delivery and      https://doi.org/10.1007/s13346-017-0466-4

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3       145
   148   149   150   151   152   153   154   155   156   157   158