Page 163 - IJB-8-2
P. 163

Wang, et al.
               https://doi.org/10.1038/s41578-018-0006-y           https://doi.org/10.1016/S0955-2219(97)00186-6
           3.   Hull CW, Uvp I, 1986, Apparatus for Production of Three-  14.  Zhu W, Ma X, Gou M, et al., 2016, 3D Printing of Functional
               dimensional  Objects  by  Stereolithography. Patent US-  Biomaterials for Tissue Engineering. Curr Opin Biotechnol,
               6027324-A.                                          40:103–12.
           4.   Klebe RJ, 1988, Cytoscribing: A Method for Micropositioning      https://doi.org/10.1016/j.copbio.2016.03.014
               Cells and the Construction of  Two  and  Three-dimensional   15.  Xing JF, Zheng ML, Duan XM, 2015,  Two-photon
               Synthetic Tissues. Exp Cell Res, 179:362–73.        Polymerization Microfabrication of Hydrogels: An Advanced
               https://doi.org/10.1016/0014-4827(88)90275-3        3D Printing  Technology For  Tissue Engineering  and Drug
           5.   Castilho  M,  de  Ruijter  M,  Beirne  S, et al., 2020,   Delivery. Chem Soc Rev, 44:5031–9.
               Multitechnology  Biofabrication:  A  New  Approach for the      https://doi.org/10.1039/c5cs00278h
               Manufacturing of Functional  Tissue Structures?  Trends   16.  Nguyen AK, Narayan RJ, 2017, Two-photon Polymerization
               Biotechnol, 38:1316–28.                             for Biological Applications. Mater Today, 20:314–22.
               https://doi.org/10.1016/j.tibtech.2020.04.014       https://doi.org/10.1016/j.mattod.2017.06.004
           6.   Maloca PM, Tufail A, Hasler PW, et al., 2019, 3D Printing   17.  Jiang T, Munguia-Lopez  JG, Flores-Torres S, et al., 2019,
               of the Choroidal  Vessels and  Tumours Based on Optical   Extrusion Bioprinting  of Soft Materials:  An Emerging
               Coherence Tomography. Acta Ophthalmol, 97:e313–6.   Technique for Biological Model Fabrication. Appl Phys Rev,
               https://doi.org/10.1111/aos.13637                   6:011310.
           7.   AlQattan  B,  Yetisen  A  Kand  Butt  H,  2018,  Direct  laser      https://doi.org/10.1063/1.5059393
               writing of nanophotonic structures on contact  lenses.  ACS   18.  Li  X, Liu  B, Pei  B, et  al.,  2020,  Inkjet  Bioprinting  of
               Nano, 12:5130–40.                                   Biomaterials. Chem Rev, 120:10793–833.
               https://doi.org/10.1021/acsnano.8b00222         19.  Cui X, Boland T, D’Lima DD, et al., 2012, Thermal Inkjet
           8.   Park J, Ahn D B, Kim J, et al., 2019, Printing of Wirelessly   Printing in Tissue Engineering and Regenerative Medicine.
               Rechargeable  Solid-state  Supercapacitors  for Soft, Smart   Recent Pat Drug Deliv Formul, 6:149–155.
               Contact Lenses with Continuous Operations.  Sci Adv,      https://doi.org/10.2174/187221112800672949
               5:eaay0764.                                     20.  Nishiyama  Y,  Nakamura  M,  Henmi  C, et  al., 2009,
               https://doi.org/10.1126/sciadv.aay0764              Development of a Three-dimensional Bioprinter: Construction
           9.   Sommer  AC, Blumenthal  EZ, 2019, Implementations  of   of Cell Supporting Structures Using Hydrogel and State-of-
               3D Printing in Ophthalmology.  Graefes  Arch Clin Exp   the-art Inkjet Technology. J Biomech Eng, 131:035001.
               Ophthalmol, 257:1815–22.                            https://doi.org/10.1115/1.3002759
               https://doi.org/10.1007/s00417-019-04312-3      21.  Nakamura M, Iwanaga S, Henmi C, et al., 2010, Biomatrices
           10.  Xie  P,  Hu  Z,  Zhang  X, et al., 2014,  Application  of   and Biomaterials for Future Developments of Bioprinting and
               3-dimensional  Printing  Technology  to  Construct  an  Eye   Biofabrication. Biofabrication, 2:0141.
               Model for Fundus Viewing Study. PLoS One, 9:e109373.     https://doi.org/10.1088/1758-5082/2/1/014110
               https://doi.org/10.1371/journal.pone.0109373    22.  Wijshoff H, 2010, The Dynamics of the Piezo Inkjet Printhead
           11.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat Polymerization-  Operation. Phys Rep, 491:77–177.
               based Bioprinting-Process, Materials,  Applications and      https://doi.org/10.1016/j.physrep.20https://doi.org/10.03.003
               Regulatory Challenges. Biofabrication, 12:022001.  23.  Christensen K, Xu C, Chai W, et al., 2015, Freeform Inkjet
               https://doi.org/10.1088/1758-5090/ab6034            Printing of Cellular Structures with Bifurcations. Biotechnol
           12.  Zhao W, Qin P, Zhang D, et al., 2019, Long Non-coding RNA   Bioeng, 112:1047–55.
               PVT1 Encapsulated  in Bone Marrow Mesenchymal Stem      https://doi.org/10.1002/bit.25501
               Cell-derived Exosomes Promotes Osteosarcoma Growth and   24.  Park  JU,  Hardy  M,  Kang  SJ, et al.,  2007,  High-resolution
               Metastasis by Stabilizing  ERG and Sponging miR-183-5p.   Electrohydrodynamic Jet Printing. Nat Mater, 6:782–9.
               Aging (Albany NY), 11:9581–96.                      https://doi.org/10.1038/nmat1974
               https://doi.org/10.18632/aging.102406           25.  Poellmann  MJ, Barton KL, Mishra S, et al., 2011,
           13.  Hinczewski  C,  Corbel  S,  Chartier  T, 1998, Ceramic   Patterned  Hydrogel  Substrates  for  Cell  Culture  with
               Suspensions  Suitable for Stereolithography.  J  Eur Ceram   Electrohydrodynamic  Jet Printing.  Macromol Biosci,
               Soc, 18:583–90.                                     11:1164–8.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 2       155
   158   159   160   161   162   163   164   165   166   167   168