Page 166 - IJB-8-2
P. 166

Application of Bioprinting in Ophthalmology
               https://doi.org/10.3390/ma11020302                  https://doi.org/10.3389/fmed.2021.770780
           71.  Flaxman SR, Bourne RR, Resnikoff S, et al., 2017, Global   81.  Hoon  M,  Okawa  H,  Santina  LD, et al., 2014, Functional
               Causes of Blindness  and  Distance  Vision  Impairment   Architecture of the Retina: Development and Disease. Prog
               1990–2020:  A  Systematic  Review  and  meta-  Retin Eye Res, 42:44–84.
               analysis. Lancet Global Health, 5:e1221–34.         https://doi.org/10.1016/j.preteyeres.2014.06.003
               https://doi.org/10.1016/S2214-109X(17)30393-5   82.  Ruiz-Alonso S, Villate-Beitia I, Gallego I, et al., 2021, Current
           72.  Mathews PM, Lindsley K, Aldave AJ, et al., 2018, Etiology   Insights Into 3D Bioprinting: An Advanced Approach for Eye
               of Global Corneal Blindness and Current Practices of Corneal   Tissue Regeneration. Pharmaceutics, 13:308.
               Transplantation: A Focused Review. Cornea, 37:1198–203.     https://doi.org/10.3390/pharmaceutics13030308
               https://doi.org/10.1097/ICO.0000000000001666    83.  Lorber  B,  Hsiao  WK,  Hutchings  IM,  et  al.,  2014, Adult
           73.  Gain  P,  Jullienne  R,  He  Z, et al., 2016, Global Survey   Rat Retinal Ganglion Cells and Glia can be Printed by
               of Corneal  Transplantation  and  Eye  Banking.  JAMA   Piezoelectric Inkjet Printing. Biofabrication, 6:015001.
               Ophthalmol, 134:167–73.                             https://doi.org/10.1088/1758-5082/6/1/015001
               https://doi.org/10.1001/jamaophthalmol.2015.4776  84.  Masaeli E, Forster V, Picaud S, et al., 2020, Tissue Engineering
           74.  Zhang  B,  Xue  Q, Li  J,  et  al.,  2019,  3D bioprinting  for   of  Retina  Through  High  Resolution  3-Dimensional  Inkjet
               Artificial  Cornea:  Challenges  and  Perspectives.  Med Eng   Bioprinting. Biofabrication, 12:025006.
               Phys, 71:68–78.                                     https://doi.org/10.1088/1758-5090/ab4a20
               https://doi.org/10.1016/j.medengphy.2019.05.002  85.  Masaeli  E, Marquette  C, 2020, Direct-Write  Bioprinting
           75.  Fuest  M,  Yam  GH,  Mehta  JS, et al., 2020, Prospects   Approach to Construct Multilayer Cellular  Tissues.  Front
               and Challenges of  Translational Corneal Bioprinting.   Bioeng Biotechnol, 7:478.
               Bioengineering, 7:71.                               https://doi.org/10.3389/fbioe.2019.00478
               https://doi.org/10.3390/bioengineering7030071   86.  Meek KM, Knupp C, 2015, Corneal Structure and
           76.  Faye PA, Poumeaud F, Chazelas P, et al., 2021, Focus on Cell   Transparency. Prog Retin Eye Res, 49:1–16.
               Therapy to Treat Corneal Endothelial Diseases. Exp Eye Res,      https://doi.org/10.1016/j.preteyeres.2015.07.001
               204:108462.                                     87.  Kutlehria S, Dinh TC, Bagde A, et al., 2020, High-throughput
               https://doi.org/10.1016/j.exer.2021.108462          3D Bioprinting  of Corneal  Stromal  Equivalents.  J  Biomed
           77.  Campos DF, Rohde M, Ross M, et al., 2019, Corneal   Mater Res B Appl Biomater, 108:2981–94.
               Bioprinting Utilizing Collagen-based Bioinks and Primary      https://doi.org/10.1002/jbm.b.34628
               Human Keratocytes. J Biomed Mater Res Part A, 107:1945–53.  88.  Mahdavi  SS,  Abdekhodaie  MJ,  Kumar  H, et al., 2020,
               https://doi.org/10.1002/jbm.a.36702                 Stereolithography 3D Bioprinting Method for Fabrication
           78.  Kong B, Chen Y, Liu R, et al., 2020, Fiber Reinforced GelMA   of  Human  Corneal  Stroma  Equivalent.  Ann  Biomed  Eng,
               Hydrogel to Induce the Regeneration of Corneal Stroma. Nat   48:1955–70.
               Commun, 11:1435–5.                                  https://doi.org/10.1007/s10439-020-02537-6
               https://doi.org/10.1038/s41467-020-14887-9      89.  Shi  P,  Edgar TY,  Yeong WY, et al.,  2017,  Hybrid  Three-
           79.  Kim H, Jang J, Park J, et al., 2019, Shear-induced Alignment   dimensional (3D) Bioprinting of Retina Equivalent for Ocular
               of Collagen Fibrils Using 3D Cell Printing for Corneal   Research. Int J Bioprint, 3:8.
               Stroma Tissue Engineering. Biofabrication, 11:035017.     https://doi.org/10.18063/IJB.2017.02.008
               https://doi.org/10.1088/1758-5090/ab1a8b        90.  Worthington KS,  Wiley LA, Kaalberg EE, et al., 2017,
           80.  Holland G, Pandit A, Sanchez-Abella L, et al., 2021, Artificial   Two-photon Polymerization for Production of Human iPSC-
               Cornea:  Past, Current,  and Future Directions.  Front  Med   derived Retinal Cell Grafts. Acta Biomater, 55:385–95.
               (Lausanne), 8:770780.                               https://doi.org/10.1016/j.actbio.2017.03.039




                                                               Publisher’s note
                                                               Whioce  Publishing remains neutral  with regard to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

           158                         International Journal of Bioprinting (2022)–Volume 8, Issue 2
   161   162   163   164   165   166   167   168   169   170   171