Page 164 - IJB-8-2
P. 164

Application of Bioprinting in Ophthalmology
               https://doi.org/10.1002/mabi.201100004              https://doi.org/10.1016/j.mser.2017.07.001
           26.  Dorishetty P, Dutta NK, Choudhury NR, 2020, Bioprintable   37.  Lee KY, Mooney DJ, 2001, Hydrogels for Tissue Engineering.
               Tough Hydrogels for Tissue Engineering Applications. Adv   Chem Rev, 101:1869–79.
               Colloid Interface Sci, 281:102163.                  https://doi.org/10.1021/cr000108x
               https://doi.org/10.1016/j.cis.2020.102163       38.  Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll
           27.  Gu Z, Fu J, Lin H, et al., 2019, Development of 3D Bioprinting:   Collagen  Solution as a Novel Bioink  for Direct  3D
               From Printing Methods to Biomedical Applications. Asian J   Bioprinting. J Mater Sci Mater Med, 30:31.
               Pharm Sci, 15:529–557.                              https://doi.org/10.1007/s10856-019-6233-y
               https://doi.org/10.1016/j.ajps.2019.11.003      39.  Stepanovska  J,  Otahal  M,  Hanzalek  K, et al.,  2021,  pH
           28.  Sorkio A, Koch L, Koivusalo L, et al., 2018, Human Stem   Modification  of  High-Concentrated  Collagen  Bioinks  as  a
               Cell Based Corneal  Tissue Mimicking Structures Using   Factor Affecting Cell Viability, Mechanical Properties, and
               Laser-assisted 3D Bioprinting  and Functional  Bioinks.   Printability. Gels, 7:252.
               Biomaterials, 171:57–71.                            https://doi.org/10.3390/gels7040252
               https://doi.org/10.1016/j.biomaterials.2018.04.034  40.  Wu Z, Liu J, Lin J, et al., 2022, Novel Digital Light Processing
           29.  Mecham RP, 2012, Overview of Extracellular Matrix. Curr   Printing  Strategy  Using a  Collagen-Based  Bioink  with
               Protoc Cell Biol, Chapter 10:Unit 10 11.            Prospective Cross-Linker Procyanidins. Biomacromolecules,
               https://doi.org/10.1002/0471143030.cb1001s57        23:240–52.
           30.  Pati F, Jang J, Ha DH, et al., 2014, Printing Three-dimensional      https://doi.org/10.1021/acs.biomac.1c01244
               Tissue Analogues with Decellularized Extracellular  Matrix   41.  Lee JM,  Suen SK,  Ng  WL, et al., 2021, Bioprinting of
               Bioink. Nat Commun, 5:3935.                         Collagen:  Considerations,  Potentials, and  Applications.
               https://doi.org/10.1038/ncomms4935                  Macromol Biosci, 21:e2000280.
           31.  Kim H, Park MN, Kim J, et al., 2019, Characterization of      https://doi.org/10.1002/mabi.202000280
               Cornea-specific Bioink: High transparency, Improved In Vivo   42.  Roth EA, Xu T, Das M, et al., 2004, Inkjet printing for high-
               Safety. J Tissue Eng, 10:2041731418823382.          throughput cell patterning. Biomaterials, 25:3707–15.
               https://doi.org/10.1177/2041731418823382            https://doi.org/10.1016/j.biomaterials.2003.10.052
           32.  Maqueda M, Mosquera JL, Garcia-Arumi J, et al., 2021,   43.  Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based
               Repopulation of Decellularized Retinas with hiPSC-derived   Bioprinting  process, Bio-inks and  Applications.  Biomater
               Retinal  Pigment  Epithelial  and  Ocular  Progenitor  Cells   Sci, 5:632–47.
               Shows  Cell  Engraftment,  Organization  and  Differentiation.      https://doi.org/10.1039/c6bm00861e
               Biomaterials, 276:121049.                       44.  Wang P, Li  X, Zhu  W, et  al., 2018, 3D Bioprinting  of
               https://doi.org/10.1016/j.biomaterials.2021.121049  Hydrogels for Retina Cell Culturing. Bioprinting (Amsterdam,
           33.  Wang F, Shi W, Li H, et al., 2020, Decellularized Porcine   Netherlands), 11:e00029.
               Cornea-derived Hydrogels for the Regeneration of Epithelium      https://doi.org/10.1016/j.bprint.2018.e00029
               and Stroma in Focal Corneal Defects. Ocul Surf, 18:748–60.  45.  Khalili  M,  Asadi  M,  Kahroba  H, et al., 2020, Corneal
               https://doi.org/10.1016/j.jtos.2020.07.020          Endothelium Tissue Engineering: An Evolution of Signaling
           34.  Chameettachal S, Prasad D, Parekh Y, et al., 2021, Prevention   Molecules, Cells, and Scaffolds toward 3D Bioprinting and
               of Corneal Myofibroblastic Differentiation In Vitro Using a   Cell Sheets. J Cell Physiol, 236:3275–303.
               Biomimetic ECM Hydrogel for Corneal Tissue Regeneration.      https://doi.org/10.1002/jcp.30085
               ACS Appl Bio Mater, 4:533–44.                   46.  Ashammakhi  N,  Ahadian S, Xu C, et al., 2019, Bioinks
               https://doi.org/10.1021/acsabm.0c01112              and  Bioprinting  Technologies  to  Make  Heterogeneous
           35.  Bektas  CK,  Hasirci  V,  2020,  Cell  Loaded  3D  Bioprinted   and Biomimetic  Tissue Constructs.  Materials  Today Bio,
               GelMA Hydrogels for Corneal Stroma Engineering. Biomater   1:100008.
               Sci, 8:438–49.                                      https://doi.org/10.1016/j.mtbio.2019.100008
               https://doi.org/10.1039/C9BM01236B              47.  West-Mays JA, Dwivedi DJ, 2006, The Keratocyte: Corneal
           36.  Leijten J, Seo J, Yue K, et al., 2017, Spatially and Temporally   Stromal Cell with Variable Repair Phenotypes. Int J Biochem
               Controlled Hydrogels for Tissue Engineering. Mater Sci Eng   Cell Biol, 38:1625–31.
               R Rep, 119:1–35.                                    https://doi.org/10.1016/j.biocel.2006.03.010

           156                         International Journal of Bioprinting (2022)–Volume 8, Issue 2
   159   160   161   162   163   164   165   166   167   168   169