Page 165 - IJB-8-2
P. 165

Wang, et al.
           48.  Gouveia RM, Connon CJ, 2013, The Effects of Retinoic Acid   (Thorofare NJ: 1995), 32:201–4.
               on  Human  Corneal  Stromal  Keratocytes  Cultured  In Vitro      https://doi.org/10.3928/1081597X-20160121-05
               Under Serum-Free Conditions.  Investig Ophthalmol Visual   60.  John G, Michal EP, Tomasz ST, 2017, Quantitative Evaluation
               Sci, 54:7483–91.                                    of Performance  of  Three-dimensional Printed Lenses.  Opt
               https://doi.org/10.1167/iovs.13-13092               Eng, 56:1–13.
           49.  Isaacson A, Swioklo S, Connon CJ, 2018, 3D Bioprinting of      https://doi.org/10.1117/1.OE.56.8.084110
               a Corneal Stroma Equivalent. Exp Eye Res, 173:188–93.  61.  Park SH, Su R, Jeong J, et al., 2018, 3D Printed Polymer
               https://doi.org/10.1016/j.exer.2018.05.010          Photodetectors.  Adv Mater  (Deerfield  Beach,  Fla.),
           50.  Jin K, Wang S, Zhang Y, et al., 2019, Long Non-coding RNA   30:e1803980.
               PVT1 Interacts with MYC and its Downstream Molecules to      https://doi.org/10.1002/adma.201803980
               Synergistically  Promote Tumorigenesis.  Cell Mol Life Sci,   62.  Callahan AB, Campbell AA, Petris C, et al., 2017, Low-Cost
               76:4275–89.                                         3D Printing Orbital Implant Templates in Secondary Orbital
               https://doi.org/10.1007/s00018-019-03222-1          Reconstructions. Ophthalmic Plastic Reconstr Surg, 33:376–80.
           51.  Kim KW, Lee SJ, Park SH, et al., 2018, Ex Vivo Functionality      https://doi.org/10.1097/IOP.0000000000000884
               of 3D Bioprinted  Corneal  Endothelium  Engineered  with   63.  Dave TV, Gaur G, Chowdary N, et al., 2018, Customized
               Ribonuclease 5-Overexpressing Human Corneal Endothelial   3D Printing: A Novel Approach to Migrated Orbital Implant.
               Cells. Adv Healthc Mater, 7:1800398.                Saudi J Ophthalmol, 32:330–3.
               https://doi.org/10.1002/adhm.201800398              https://doi.org/10.1016/j.sjopt.2018.03.003
           52.  Masland  RH,  2011,  Cell  Populations  of  the  Retina:  The   64.  Fan  B,  Chen  H,  Sun  YJ, et  al.,  2017,  Clinical  Effects  of
               Proctor Lecture. Investig Ophthalmol Visual Sci, 52:4581–91.  3-D Printing-assisted Personalized Reconstructive  Surgery
               https://doi.org/10.1167/iovs.10-7083                for Blowout Orbital  Fractures.  Graefes  Arch Clin Exp
           53.  Lorber B, Hsiao WK, Martin KR, 2016, Three-dimensional   Ophthalmol, 255:2051–7.
               Printing of the Retina. Curr Opin Ophthalmol, 27:262–7.     https://doi.org/10.1007/s00417-017-3766-y
               https://doi.org/10.1097/ICU.0000000000000252    65.  Kang S, Kwon J,  Ahn CJ, et  al., 2018, Generation  of
           54.  Kador KE, Grogan SP, Dorthé EW, et  al., 2016, Control   Customized Orbital Implant Templates Using 3-dimensional
               of Retinal Ganglion Cell  Positioning and Neurite  Growth:   Printing  for Orbital  Wall  Reconstruction.  Eye  (London,
               Combining 3D Printing with Radial Electrospun Scaffolds.   England), 32:1864–70.
               Tissue Eng Part A, 22:286–94.                       https://doi.org/10.1038/s41433-018-0193-1
               https://doi.org/10.1089/ten.TEA.2015.0373       66.  Zamboulis A, Nanaki S, Michailidou G, et al., 2020, Chitosan
           55.  Yong  HE,  Qing  GA,  Liu A,  et  al.,  2019,  3D Bioprinting:   and its Derivatives for Ocular Delivery Formulations: Recent
               From Structure to Function. J Zhejiang Univ, 53:407–19.  Advances and Developments. Polymers, 12:1519.
               https://doi.org/10.3785/j.issn.1008-973X.2019.03.001     https://doi.org/10.3390/polym12071519
           56.  Farandos NM,  Yetisen  AK, Monteiro MJ, et al., 2015,   67.  Silva MM, Calado  R, Marto J, et al., 2017, Chitosan
               Contact  Lens Sensors in Ocular Diagnostics.  Adv Healthc   Nanoparticles as a Mucoadhesive Drug Delivery System for
               Mater, 4:792–8.                                     Ocular Administration. Mar Drugs, 15:370.
               https://doi.org/10.1002/adhm.201400504              https://doi.org/10.3390/md15120370
           57.  Tang H, Alqattan B, Jackson T, et al., 2020, Cost-Efficient   68.  Başaran E, Yazan Y, 2012, Ocular Application of Chitosan.
               Printing of  Graphene Nanostructures on Smart Contact   Exp Opin Drug Deliv, 9:701–12.
               Lenses. ACS Applied Materials & Interfaces, 12(9): 10820-     https://doi.org/10.1517/17425247.2012.681775
               10828.    https://doi.org/10.1021/acsami.9b21300  69.  Lynch C, Kondiah PP, Choonara YE, et al., 2019, Advances
           58.  Sanchez-Tena  MA,  Alvarez-Peregrina  C, Santos-Arias F,   in Biodegradable  Nano-Sized Polymer-Based Ocular Drug
               et al., 2019, Application of 3D Printing Technology in Scleral   Delivery. Polymers, 11:1371.
               Cover Shell Prosthesis. J Med Syst, 43:149.         https://doi.org/10.3390/polym11081371
               https://doi.org/10.1007/s10916-019-1280-y       70.  Cho  H,  Jammalamadaka  U,  Tappa  K,  2018,  Nanogels  for
           59.  Debellemanière G, Flores M, Montard M, et al., 2016, Three-  Pharmaceutical  and Biomedical  Applications and  Their
               dimensional  Printing of Optical Lenses and Ophthalmic   Fabrication  Using 3D Printing  Technologies.  Materials
               Surgery:  Challenges  and Perspectives.  J  Refract  Surg   (Basel, Switzerland), 11:302.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 2       157
   160   161   162   163   164   165   166   167   168   169   170