Page 165 - IJB-8-2
P. 165
Wang, et al.
48. Gouveia RM, Connon CJ, 2013, The Effects of Retinoic Acid (Thorofare NJ: 1995), 32:201–4.
on Human Corneal Stromal Keratocytes Cultured In Vitro https://doi.org/10.3928/1081597X-20160121-05
Under Serum-Free Conditions. Investig Ophthalmol Visual 60. John G, Michal EP, Tomasz ST, 2017, Quantitative Evaluation
Sci, 54:7483–91. of Performance of Three-dimensional Printed Lenses. Opt
https://doi.org/10.1167/iovs.13-13092 Eng, 56:1–13.
49. Isaacson A, Swioklo S, Connon CJ, 2018, 3D Bioprinting of https://doi.org/10.1117/1.OE.56.8.084110
a Corneal Stroma Equivalent. Exp Eye Res, 173:188–93. 61. Park SH, Su R, Jeong J, et al., 2018, 3D Printed Polymer
https://doi.org/10.1016/j.exer.2018.05.010 Photodetectors. Adv Mater (Deerfield Beach, Fla.),
50. Jin K, Wang S, Zhang Y, et al., 2019, Long Non-coding RNA 30:e1803980.
PVT1 Interacts with MYC and its Downstream Molecules to https://doi.org/10.1002/adma.201803980
Synergistically Promote Tumorigenesis. Cell Mol Life Sci, 62. Callahan AB, Campbell AA, Petris C, et al., 2017, Low-Cost
76:4275–89. 3D Printing Orbital Implant Templates in Secondary Orbital
https://doi.org/10.1007/s00018-019-03222-1 Reconstructions. Ophthalmic Plastic Reconstr Surg, 33:376–80.
51. Kim KW, Lee SJ, Park SH, et al., 2018, Ex Vivo Functionality https://doi.org/10.1097/IOP.0000000000000884
of 3D Bioprinted Corneal Endothelium Engineered with 63. Dave TV, Gaur G, Chowdary N, et al., 2018, Customized
Ribonuclease 5-Overexpressing Human Corneal Endothelial 3D Printing: A Novel Approach to Migrated Orbital Implant.
Cells. Adv Healthc Mater, 7:1800398. Saudi J Ophthalmol, 32:330–3.
https://doi.org/10.1002/adhm.201800398 https://doi.org/10.1016/j.sjopt.2018.03.003
52. Masland RH, 2011, Cell Populations of the Retina: The 64. Fan B, Chen H, Sun YJ, et al., 2017, Clinical Effects of
Proctor Lecture. Investig Ophthalmol Visual Sci, 52:4581–91. 3-D Printing-assisted Personalized Reconstructive Surgery
https://doi.org/10.1167/iovs.10-7083 for Blowout Orbital Fractures. Graefes Arch Clin Exp
53. Lorber B, Hsiao WK, Martin KR, 2016, Three-dimensional Ophthalmol, 255:2051–7.
Printing of the Retina. Curr Opin Ophthalmol, 27:262–7. https://doi.org/10.1007/s00417-017-3766-y
https://doi.org/10.1097/ICU.0000000000000252 65. Kang S, Kwon J, Ahn CJ, et al., 2018, Generation of
54. Kador KE, Grogan SP, Dorthé EW, et al., 2016, Control Customized Orbital Implant Templates Using 3-dimensional
of Retinal Ganglion Cell Positioning and Neurite Growth: Printing for Orbital Wall Reconstruction. Eye (London,
Combining 3D Printing with Radial Electrospun Scaffolds. England), 32:1864–70.
Tissue Eng Part A, 22:286–94. https://doi.org/10.1038/s41433-018-0193-1
https://doi.org/10.1089/ten.TEA.2015.0373 66. Zamboulis A, Nanaki S, Michailidou G, et al., 2020, Chitosan
55. Yong HE, Qing GA, Liu A, et al., 2019, 3D Bioprinting: and its Derivatives for Ocular Delivery Formulations: Recent
From Structure to Function. J Zhejiang Univ, 53:407–19. Advances and Developments. Polymers, 12:1519.
https://doi.org/10.3785/j.issn.1008-973X.2019.03.001 https://doi.org/10.3390/polym12071519
56. Farandos NM, Yetisen AK, Monteiro MJ, et al., 2015, 67. Silva MM, Calado R, Marto J, et al., 2017, Chitosan
Contact Lens Sensors in Ocular Diagnostics. Adv Healthc Nanoparticles as a Mucoadhesive Drug Delivery System for
Mater, 4:792–8. Ocular Administration. Mar Drugs, 15:370.
https://doi.org/10.1002/adhm.201400504 https://doi.org/10.3390/md15120370
57. Tang H, Alqattan B, Jackson T, et al., 2020, Cost-Efficient 68. Başaran E, Yazan Y, 2012, Ocular Application of Chitosan.
Printing of Graphene Nanostructures on Smart Contact Exp Opin Drug Deliv, 9:701–12.
Lenses. ACS Applied Materials & Interfaces, 12(9): 10820- https://doi.org/10.1517/17425247.2012.681775
10828. https://doi.org/10.1021/acsami.9b21300 69. Lynch C, Kondiah PP, Choonara YE, et al., 2019, Advances
58. Sanchez-Tena MA, Alvarez-Peregrina C, Santos-Arias F, in Biodegradable Nano-Sized Polymer-Based Ocular Drug
et al., 2019, Application of 3D Printing Technology in Scleral Delivery. Polymers, 11:1371.
Cover Shell Prosthesis. J Med Syst, 43:149. https://doi.org/10.3390/polym11081371
https://doi.org/10.1007/s10916-019-1280-y 70. Cho H, Jammalamadaka U, Tappa K, 2018, Nanogels for
59. Debellemanière G, Flores M, Montard M, et al., 2016, Three- Pharmaceutical and Biomedical Applications and Their
dimensional Printing of Optical Lenses and Ophthalmic Fabrication Using 3D Printing Technologies. Materials
Surgery: Challenges and Perspectives. J Refract Surg (Basel, Switzerland), 11:302.
International Journal of Bioprinting (2022)–Volume 8, Issue 2 157

