Page 116 - IJB-8-3
P. 116

Rare Earth Magnesium Alloy
           16.  Goncharov I, Razumov N, Silin A, et al., 2019, Synthesis of   Additive  Manufacturing:  A  Critical  Review.  Adv  Powder
               Nb-based Powder alloy by Mechanical Alloying and Plasma   Mater, 1:100014.
               Spheroidization  Processes for  Additive  Manufacturing.      https://doi.org/10.1016/j.apmate.2021.11.001
               Mater Lett, 245:188–91.                         27.  Esmaily M, Zeng Z, Mortazavi A, et al., 2020, A Detailed
               https://doi.org/10.1016/j.matlet.2019.03.014        Microstructural and Corrosion Analysis of Magnesium Alloy
           17.  Xiao  B,  Xu  L,  Cayron  C, et al., 2020, Solute-dislocation   WE43 Manufactured by Selective Laser Melting.  Addit
               Interactions and Creep-enhanced Cu Precipitation in a Novel   Manuf, 35:101321.
               Ferritic-martensitic Steel. Acta Mater, 195:199–208.     https://doi.org/10.1016/j.addma.2020.101321
               https://doi.org/10.1016/j.actamat.2020.05.054   28.  Ogawa Y,  Ando  D,  Sutou Y, et al., 2016,  A Lightweight
           18.  Geng Y, Mo Y, Zheng H, et al., 2021, Effect of Laser Shock   Shape-memory Magnesium Alloy. Science, 353:368–70.
               Peening on the hot Corrosion Behavior of Ni-based Single-     https://doi.org/10.1126/science.aaf6524
               crystal Superalloy at 750° C. Corrosion Sci, 185:109419.  29.  Cacace S, Semeraro Q, 2021, Fast Optimisation Procedure
               https://doi.org/10.1016/j.corsci.2021.109419        for the  Selection of L-PBF Parameters  Based on Utility
           19.  Li L, Shi J, Ma K, et al., 2021, Robotic  In Situ 3D Bio-  Function. Virtual Phys Prototyp, 1-13.
               printing  Technology for Repairing Large Segmental  Bone      https://doi.org/10.1080/17452759.2021.1998871
               Defects. J Adv Res, 30:75–84.                   30.  Yu  W,  Xiao  Z,  Zhang  X, et  al., 2022, Processing and
               https://doi.org/10.1016/j.jare.2020.11.011          Characterization of Crack-free 7075 Aluminum Alloys with
           20.  Sing SL, 2022, Perspectives on  Additive  Manufacturing   Elemental Zr Modification by Laser Powder Bed Fusion. Int
               Enabled Beta-Titanium Alloys for Biomedical Applications.   J Bioprint, 1:4.
               Int J Bioprint, 8:478.                              http://dx.doi.org/10.18063/msam.v1i1.4
               https://doi.org/10.18063/ijb.v8i1.478           31.  Huang S, Narayan RL,  Tan JH, et al., 2021, Resolving
           21.  Zhang H, Gu D, Dai D,  2022, Laser Printing Path and its   the Porosity-unmelted  Inclusion Dilemma  during  In-Situ
               Influence  on  Molten  Pool  Configuration,  Microstructure   Alloying of  Ti34Nb via Laser Powder Bed Fusion.  Acta
               and Mechanical  Properties of Laser Powder Bed Fusion   Mater, 204:116522.
               Processed Rare Earth Element Modified Al-Mg Alloy. Virtual      https://doi.org/10.1016/j.actamat.2020.116522
               Phys Prototyp, 17:308–28.                       32.  Munk J, Breitbarth  E, Siemer  T, et al., 2022, Geometry
               https://doi.org/10.1080/17452759.2022.2036530       Effect on Microstructure and Mechanical Properties in Laser
           22.  Sing S, Kuo C, Shih C, et al., 2021, Perspectives of Using   Powder Bed Fusion of Ti-6Al-4V. Metals, 12:482.
               Machine  Learning in Laser Powder Bed Fusion for Metal      https://doi.org/10.3390/met12030482
               Additive Manufacturing. Virtual Phys Prototyp, 16:372–86.  33.  Lapointe S, Guss G, Reese Z, et al., 2022, Photodiode-based
               https://doi.org/10.1080/17452759.2021.1944229       Machine Learning for Optimization  of Laser Powder Bed
           23.  Wang D, Liu L, Deng G, et al., 2022, Recent Progress on   Fusion Parameters  in Complex  Geometries.  Addit Manuf,
               Additive Manufacturing of Multi-material  Structures with   53:102687.
               Laser Powder Bed Fusion. Virtual Phys Prototyp, 17:329–65.     https://doi.org/10.1016/j.addma.2022.102687
               https://doi.org/10.1080/17452759.2022.2028343   34.  Gong  X,  Zeng  D,  Groeneveld-Meijer  W,  2022,  Additive
           24.  Shuai C, He C, Qian G, et al., 2021, Mechanically Driving   Manufacturing:  A  Machine  Learning Model of Process-
               Supersaturated  Fe-Mg Solid Solution for Bone Implant:   Structure-property Linkages for Machining Behavior of Ti-
               Preparation, Solubility and Degradation. Compos Part B Eng,   6Al-4V. Mater Sci Add Manuf, 1:16.
               207:108564.                                         https://doi.org/10.18063/msam.v1i1.6
               https://doi.org/10.1016/j.compositesb.2020.108564  35.  Cao F, Shi Z, Hofstetter J, et al., 2013, Corrosion of Ultra-
           25.  Li  B, Han C, Lim  CW,  et  al., 2022, Interface  Formation   high-purity  Mg in 3.5% NaCl Solution Saturated  with Mg
               and Deformation Behaviors of an Additively Manufactured   (OH) 2. Corrosion Sci, 75:78–99.
               Nickel-aluminum-bronze/15-5 PH Multimaterial Via Laser-     https://doi.org/10.1016/j.corsci.2013.05.018
               powder Directed  Energy Deposition.  Mater Sci Eng  A,   36.  Peng Q, Meng J, Li Y, et al., 2011, Effect of Yttrium Addition
               829:142101.                                         on Lattice  Parameter,  Young’s Modulus and  Vacancy of
               https://doi.org/10.1016/j.msea.2021.142101          Magnesium. Mater Sci Eng A, 528:2106–9.
           26.  Zhang  T, Liu CT, 2021, Design of  Titanium  Alloys by      https://doi.org/10.1016/j.msea.2010.11.042

           108                         International Journal of Bioprinting (2022)–Volume 8, Issue 3
   111   112   113   114   115   116   117   118   119   120   121