Page 116 - IJB-8-3
P. 116
Rare Earth Magnesium Alloy
16. Goncharov I, Razumov N, Silin A, et al., 2019, Synthesis of Additive Manufacturing: A Critical Review. Adv Powder
Nb-based Powder alloy by Mechanical Alloying and Plasma Mater, 1:100014.
Spheroidization Processes for Additive Manufacturing. https://doi.org/10.1016/j.apmate.2021.11.001
Mater Lett, 245:188–91. 27. Esmaily M, Zeng Z, Mortazavi A, et al., 2020, A Detailed
https://doi.org/10.1016/j.matlet.2019.03.014 Microstructural and Corrosion Analysis of Magnesium Alloy
17. Xiao B, Xu L, Cayron C, et al., 2020, Solute-dislocation WE43 Manufactured by Selective Laser Melting. Addit
Interactions and Creep-enhanced Cu Precipitation in a Novel Manuf, 35:101321.
Ferritic-martensitic Steel. Acta Mater, 195:199–208. https://doi.org/10.1016/j.addma.2020.101321
https://doi.org/10.1016/j.actamat.2020.05.054 28. Ogawa Y, Ando D, Sutou Y, et al., 2016, A Lightweight
18. Geng Y, Mo Y, Zheng H, et al., 2021, Effect of Laser Shock Shape-memory Magnesium Alloy. Science, 353:368–70.
Peening on the hot Corrosion Behavior of Ni-based Single- https://doi.org/10.1126/science.aaf6524
crystal Superalloy at 750° C. Corrosion Sci, 185:109419. 29. Cacace S, Semeraro Q, 2021, Fast Optimisation Procedure
https://doi.org/10.1016/j.corsci.2021.109419 for the Selection of L-PBF Parameters Based on Utility
19. Li L, Shi J, Ma K, et al., 2021, Robotic In Situ 3D Bio- Function. Virtual Phys Prototyp, 1-13.
printing Technology for Repairing Large Segmental Bone https://doi.org/10.1080/17452759.2021.1998871
Defects. J Adv Res, 30:75–84. 30. Yu W, Xiao Z, Zhang X, et al., 2022, Processing and
https://doi.org/10.1016/j.jare.2020.11.011 Characterization of Crack-free 7075 Aluminum Alloys with
20. Sing SL, 2022, Perspectives on Additive Manufacturing Elemental Zr Modification by Laser Powder Bed Fusion. Int
Enabled Beta-Titanium Alloys for Biomedical Applications. J Bioprint, 1:4.
Int J Bioprint, 8:478. http://dx.doi.org/10.18063/msam.v1i1.4
https://doi.org/10.18063/ijb.v8i1.478 31. Huang S, Narayan RL, Tan JH, et al., 2021, Resolving
21. Zhang H, Gu D, Dai D, 2022, Laser Printing Path and its the Porosity-unmelted Inclusion Dilemma during In-Situ
Influence on Molten Pool Configuration, Microstructure Alloying of Ti34Nb via Laser Powder Bed Fusion. Acta
and Mechanical Properties of Laser Powder Bed Fusion Mater, 204:116522.
Processed Rare Earth Element Modified Al-Mg Alloy. Virtual https://doi.org/10.1016/j.actamat.2020.116522
Phys Prototyp, 17:308–28. 32. Munk J, Breitbarth E, Siemer T, et al., 2022, Geometry
https://doi.org/10.1080/17452759.2022.2036530 Effect on Microstructure and Mechanical Properties in Laser
22. Sing S, Kuo C, Shih C, et al., 2021, Perspectives of Using Powder Bed Fusion of Ti-6Al-4V. Metals, 12:482.
Machine Learning in Laser Powder Bed Fusion for Metal https://doi.org/10.3390/met12030482
Additive Manufacturing. Virtual Phys Prototyp, 16:372–86. 33. Lapointe S, Guss G, Reese Z, et al., 2022, Photodiode-based
https://doi.org/10.1080/17452759.2021.1944229 Machine Learning for Optimization of Laser Powder Bed
23. Wang D, Liu L, Deng G, et al., 2022, Recent Progress on Fusion Parameters in Complex Geometries. Addit Manuf,
Additive Manufacturing of Multi-material Structures with 53:102687.
Laser Powder Bed Fusion. Virtual Phys Prototyp, 17:329–65. https://doi.org/10.1016/j.addma.2022.102687
https://doi.org/10.1080/17452759.2022.2028343 34. Gong X, Zeng D, Groeneveld-Meijer W, 2022, Additive
24. Shuai C, He C, Qian G, et al., 2021, Mechanically Driving Manufacturing: A Machine Learning Model of Process-
Supersaturated Fe-Mg Solid Solution for Bone Implant: Structure-property Linkages for Machining Behavior of Ti-
Preparation, Solubility and Degradation. Compos Part B Eng, 6Al-4V. Mater Sci Add Manuf, 1:16.
207:108564. https://doi.org/10.18063/msam.v1i1.6
https://doi.org/10.1016/j.compositesb.2020.108564 35. Cao F, Shi Z, Hofstetter J, et al., 2013, Corrosion of Ultra-
25. Li B, Han C, Lim CW, et al., 2022, Interface Formation high-purity Mg in 3.5% NaCl Solution Saturated with Mg
and Deformation Behaviors of an Additively Manufactured (OH) 2. Corrosion Sci, 75:78–99.
Nickel-aluminum-bronze/15-5 PH Multimaterial Via Laser- https://doi.org/10.1016/j.corsci.2013.05.018
powder Directed Energy Deposition. Mater Sci Eng A, 36. Peng Q, Meng J, Li Y, et al., 2011, Effect of Yttrium Addition
829:142101. on Lattice Parameter, Young’s Modulus and Vacancy of
https://doi.org/10.1016/j.msea.2021.142101 Magnesium. Mater Sci Eng A, 528:2106–9.
26. Zhang T, Liu CT, 2021, Design of Titanium Alloys by https://doi.org/10.1016/j.msea.2010.11.042
108 International Journal of Bioprinting (2022)–Volume 8, Issue 3

