Page 146 - IJB-8-3
P. 146

Dual-Response Composite Hydrogels
               https://doi.org/10.1038/ncomms8602              30.  Fan  Y,  Yue  Z,  Lucarelli  E, et al., 2020, Hybrid Printing
           20.  Guo J, Li Q, Zhang R, et al., 2022, Loose Pre-cross-linking   Using Cellulose  Nanocrystals  Reinforced  GelMA/HAMA
               Mediating Cellulose Self-assembly for 3D Printing Strong and   Hydrogels for Improved Structural Integration. Adv Healthc
               Tough Biomimetic Scaffolds. Biomacromolecules, 23:877-88.  Mater, 9:2001410.
               https://doi.org/10.1021/acs.biomac.1c01330.s002     https://doi.org/10.1002/adhm.202001410
           21.  Ye  D,  Yang  P,  Lei  X, et al., 2018, Robust  Anisotropic   31.  Zhao H, Zhang Y, Liu Y, et al., 2021, In Situ Forming Cellulose
               Cellulose Hydrogels Fabricated via Strong Self-aggregation   Nanofibril-Reinforced  Hyaluronic  Acid  Hydrogel  for
               Forces for Cardiomyocytes Unidirectional  Growth.  Chem   Cartilage Regeneration. Biomacromolecules, 22:5097–107.
               Mater, 30:5175–83.                                  https://doi.org/10.1021/acs.biomac.1c01063
               https://doi.org/10.1021/acs.chemmater.8b01799   32.  Sun  W, Starly B, Daly AC, et al., 2020,  The Bioprinting
           22.  Zou J,  Wu S, Chen J, et al.,  2019,  Highly  Efficient   Roadmap. Biofabrication, 12:022002.
               and Environmentally  Friendly Fabrication  of Robust,      https://doi.org/10.1088/1758-5090/ab5158
               Programmable,  and  Biocompatible  Anisotropic,  All-  33.  Arab  W, Kahin K, Khan Z, et al., 2019, Exploring
               Cellulose, Wrinkle-Patterned Hydrogels for Cell Alignment.   Nanofibrous Self-assembling Peptide Hydrogels using Mouse
               Adv Mater, 31:1904762.                              Myoblast Cells for Three-dimensional Bioprinting and Tissue
               https://doi.org/10.1002/adma.201904762              Engineering Applications. Int J Bioprinting, 5:74–82.
           23.  Kong W, Wang C, Jia C, et al., 2021, Muscle-inspired Highly      https://doi.org/10.18063/ijb.v5i2.198
               Anisotropic, Strong, Ion-Conductive Hydrogels. Adv Mater,   34.  Lin C, Wang Y, Huang Z, et al., 2021, Advances in Filament
               33:1801934–41.                                      Structure  of 3D Bioprinted  Biodegradable  Bone  Repair
               https://doi.org/10.1002/adma.201801934              Scaffolds. Int J Bioprinting, 7:43–64.
           24.  Ma T, Lv L, Ouyang C, et al., 2021, Rheological Behavior      https://doi.org/10.18063/ijb.v7i4.426
               and Particle  Alignment  of Cellulose  Nanocrystal  and its   35.  Zhang  X,  Liu  Y,  Zuo  Q, et al., 2021, 3D Bioprinting  of
               Composite Hydrogels During 3D Printing. Carbohyd Polym,   Biomimetic Bilayered Scaffold Consisting of Decellularized
               253:117217.                                         Extracellular  Matrix and Silk Fibroin for Osteochondral
               https://doi.org/10.1016/j.carbpol.2020.117217       Repair. Int J Bioprinting, 7:85–98.
           25.  Fourmann  O, Hausmann  MK, Neels  A,  et  al., 2021, 3D   36.  Zheng C, Attarilar S, Li K, et al., 2021, 3D-printed HA15-
               Printing of Shape-morphing  and  Antibacterial  Anisotropic   loaded  Beta-Tricalcium  Phosphate/Poly  (Lactic-co-glycolic
               Nanocellulose Hydrogels. Carbohydr Polym, 259:117716–27.  acid) Bone Tissue Scaffold Promotes Bone Regeneration in
               https://doi.org/10.1016/j.carbpol.2021.117716       Rabbit Radial Defects. Int J Bioprinting, 7:100–11.
           26.  Collins MN, Birkinshaw C, 2013, Hyaluronic Acid Based      https://doi.org/10.18063/ijb.v7i1.317
               scaffolds for Tissue Engineering a Review. Carbohyd Polym,   37.  Guo Z, Mi S, Sun W, 2019, A Facile Strategy for Preparing
               92:1262–79.                                         Tough, Self-Healing Double-Network  Hyaluronic  Acid
               https://doi.org/10.1016/j.carbpol.2012.10.028       Hydrogels Inspired by Mussel Cuticles.  Macromol Mater
           27.  Gwak MA, Hong BM, Seok JM, et al., 2021, Effect of Tannic   Eng, 304(4):1800715–22.
               Acid on the Mechanical and Adhesive Properties of Catechol-     https://doi.org/10.1002/mame.201800715
               modified Hyaluronic Acid Hydrogels. Int J Biol Macromol,   38.  Li Y, Yu P, Wen J, et al., 2022, Nanozyme-based Stretchable
               191:699–705.                                        Hydrogel of Low Hysteresis with  Antibacterial  and
               https://doi.org/10.1016/j.ijbiomac.2021.09.123      Antioxidant Dual Functions for Closely Fitting and Wound
           28.  Shin J, Lee JS, Lee C, et al., 2015, Tissue Adhesive Catechol-  Healing in Movable Parts. Adv Funct Mater, 32:2110720–33.
               Modified Hyaluronic Acid Hydrogel for Effective, Minimally      https://doi.org/10.1002/adfm.202110720
               Invasive Cell Therapy. Adv Funct Mater, 25:3814–24.  39.  Zhang J, Wu J, Yu J, et al., 2017, Application of Ionic Liquids
               https://doi.org/10.1002/adfm.201500006              for Dissolving  Cellulose  and Fabricating  Cellulose-based
           29.  Xavier Acasigua GA, de Olyveira GM, Manzine Costa LM,   Materials: State of the Art and Future Trends. Mater Chem
               et al., 2014, Novel Chemically Modified Bacterial Cellulose   Front, 1:1273–90.
               Nanocomposite  as Potential  Biomaterial  for Stem Cell      https://doi.org/10.1039/c6qm00348f
               Therapy Applications. Curr Stem Cell Res T, 9:117–23.  40.  Mouser  VH,  Abbadessa  A,  Levato  R, et  al., 2017,
               https://doi.org/10.2174/1574888x08666131124135654   Development  of a  Thermosensitive  HAMA-containing

           138                         International Journal of Bioprinting (2022)–Volume 8, Issue 3
   141   142   143   144   145   146   147   148   149   150   151