Page 103 - IJB-8-4
P. 103

Soman, et al.
           28.  Duarte Campos DF, Lindsay CD, Roth JG, et al., 2020, Bioprinting   Bioprinting  of  Complex  Living-Tissue  Constructs  within
               Cell-  and  Spheroid-Laden  Protein-Engineered  Hydrogels  as   Seconds. Adv Mater, 31:e1904209.
               Tissue-on-Chip Platforms. Front Bioeng Biotechnol, 8:374.     https://doi.org/10.1002/adma.201904209
               https://doi.org/10.3389/fbioe.2020.00374        34.  Keshavarz M, Wales DJ, Seichepine F, et al., 2020, Induced
           29.  Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular   neural stem cell differentiation on a drawn fiber scaffold-toward
               matrix hydrogels from decellularized tissues: Structure and   peripheral nerve regeneration. Biomed Mater, 15:055011.
               function. Acta Biomater, 49:1-15.                   https://doi.org/10.1088/1748-605X/ab8d12
               https://doi.org/10.1016/j.actbio.2016.11.068    35.  Wang J, Kong X, Li Q, et al., 2021, The spatial arrangement
           30.  Baena JM, Jiménez G, López-Ruiz E, et al., 2019, Volume-  of  cells  in  a  3D-printed  biomimetic  spinal  cord  promotes
               by-volume bioprinting of chondrocytes-alginate bioinks   directional differentiation and repairs the motor function after
               in  high  temperature  thermoplastic  scaffolds  for  cartilage   spinal cord injury. Biofabrication, 13:ac0c5f.
               regeneration. Exp Biol Med (Maywood), 244:13-21.     https://doi.org/10.1088/1758-5090/ac0c5f
               https://doi.org/10.1177/1535370218821128        36.  Wen  Z,  Zheng  JQ,  2006,  Directional  guidance  of  nerve
           31.  Sharma R, Smits IP, De La Vega L, et al., 2020, 3D Bioprinting   growth cones. Curr Opin Neurobiol, 16:52-8.
               Pluripotent Stem Cell Derived Neural Tissues Using a Novel      https://doi.org/10.1016/j.conb.2005.12.005
               Fibrin  Bioink  Containing  Drug  Releasing  Microspheres.   37.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
               Front Bioeng Biotechnol, 8:57.                      challenges of translational 3D bioprinting. Nat Biomed Eng,
               https://doi.org/10.3389/fbioe.2020.00057            4:370-80.
           32.  Skylar-Scott  MA,  Uzel  SG,  Nam  LL,  et al.,  2019,      https://doi.org/10.1038/s41551-019-0471-7
               Biomanufacturing of organ-specific tissues with high cellular   38.  Vijayavenkataraman  S, Yan  WC,  Lu  WF,  et  al.,  2018,  3D
               density and embedded vascular channels. Sci Adv, 5:eaaw2459.  bioprinting of tissues and organs for regenerative medicine.
               https://doi.org/10.1126/sciadv.aaw2459              Adv Drug Deliv Rev, 132:296-332.
           33.  Bernal  PN,  Delrot  P,  Loterie  D,  et al.,  2019,  Volumetric      https://doi.org/10.1016/j.addr.2018.07.004



































                                                               Publisher’s note
                                                               Whioce  Publishing  remains  neutral  with  regard  to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4        95
   98   99   100   101   102   103   104   105   106   107   108