Page 102 - IJB-8-4
P. 102
3D Bioprinting of Human Neural Tissues
5. Soman SS, Vijayavenkataraman S, 2020, Applications of 3D Regeneration. Stem Cells Int, 2015:948040.
Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int https://doi.org/10.1155/2015/948040
J Bioprint, 6:280. 17. Stolberg S, McCloskey KE, 2009, Can shear stress direct
https://doi.org/10.18063/ijb.v6i4.280 stem cell fate? Biotechnol Prog, 25:10-9.
6. Srubar WV 3 , 2021, Engineered Living Materials: https://doi.org/10.1002/btpr.124
rd
Taxonomies and Emerging Trends. Trends Biotechnol, 18. Li C, Ouyang L, Armstrong JP, et al., 2021, Advances in the
39:574-83. Fabrication of Biomaterials for Gradient Tissue Engineering.
https://doi.org/10.1016/j.tibtech.2020.10.009 Trends Biotechnol, 39:150-64.
7. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing https://doi.org/10.1016/j.tibtech.2020.06.005
of layered brain-like structures using peptide modified gellan 19. De Santis MM, Alsafadi HN, Tas S, et al., 2021, Extracellular-
gum substrates. Biomaterials, 67:264-73. Matrix-Reinforced Bioinks for 3D Bioprinting Human
https://doi.org/10.1016/j.biomaterials.2015.07.022 Tissue. Adv Mater, 33:e2005476.
8. Joung D, Truong V, Neitzke CC, et al., 2018, 3D Printed https://doi.org/10.1002/adma.202005476
Stem-Cell Derived Neural Progenitors Generate Spinal Cord 20. Echeverria Molina MI, Malollari KG, Komvopoulos K,
Scaffolds. Adv Funct Mater, 28:1801850. 2021, Design Challenges in Polymeric Scaffolds for Tissue
https://doi.org/10.1002/adfm.201801850 Engineering. Front Bioeng Biotechnol, 9:617141.
9. Madhusudanan P, Raju G, Shankarappa S, 2020, Hydrogel https://doi.org/10.3389/fbioe.2021.617141
systems and their role in neural tissue engineering. J R Soc 21. He Y, Hou H, Wang S, et al., 2021, From waste of marine
Interface, 17:20190505. culture to natural patch in cardiac tissue engineering. Bioact
https://doi.org/10.1098/rsif.2019.0505 Mater, 6:2000-10.
10. Bsoul A, Pan S, Cretu E, et al., 2016, Design, microfabrication, https://doi.org/10.1016/j.bioactmat.2020.12.011
and characterization of a moulded PDMS/SU-8 inkjet 22. Dunlop MJ, Clemons C, Reiner R, et al., 2020, Towards the
dispenser for a Lab-on-a-Printer platform technology with scalable isolation of cellulose nanocrystals from tunicates.
disposable microfluidic chip. Lab Chip, 16:3351-61. Sci Rep, 10:19090.
https://doi.org/10.1039/c6lc00636a https://doi.org/10.1038/s41598-020-76144-9
11. Park S, Kim D, Park S, et al., 2018, Nanopatterned Scaffolds 23. Govindharaj M, Al Hashemi NS, Soman SS, et al., 2022,
for Neural Tissue Engineering and Regenerative Medicine. Bioprinting of bioactive tissue scaffolds from ecologically-
Adv Exp Med Biol, 1078:421-43. destructive fouling tunicates. J Clean Prod, 330:129923.
https://doi.org/10.1007/978-981-13-0950-2_22 https://doi.org/10.1016/j.jclepro.2021.129923
12. Shaqour B, Aizawa J, Guarch-Pérez C, et al., 2021, 24. Zhu Q, Li M, Yan C, et al., 2017, Directed Differentiation of
Coupling Additive Manufacturing with Hot Melt Extrusion Human Embryonic Stem Cells to Neural Crest Stem Cells,
Technologies to Validate a Ventilator-Associated Pneumonia Functional Peripheral Neurons, and Corneal Keratocytes.
Mouse Model. Pharmaceutics, 13:772. Biotechnol J, 12:67.
https://doi.org/10.3390/pharmaceutics13060772 https://doi.org/10.1002/biot.201700067
13. Levato R, Jungst T, Scheuring RG, et al., 2020, From Shape to 25. Vijayavenkataraman S, Kannan S, Cao T, et al., 2019,
Function: The Next Step in Bioprinting. Adv Mater, 32:e1906423. 3D-Printed PCL/PPy Conductive Scaffolds as Three-
https://doi.org/10.1002/adma.201906423 Dimensional Porous Nerve Guide Conduits (NGCs)
14. Moroni L, Burdick JA, Highley C, et al., 2018, Biofabrication for Peripheral Nerve Injury Repair. Front Bioeng
strategies for 3D in vitro models and regenerative medicine. Biotechnol, 7:266.
Nat Rev Mater, 3:21-37. https://doi.org/10.3389/fbioe.2019.00266
https://doi.org/10.1038/s41578-018-0006-y 26. Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D Bioprinted
15. Ouyang L, Highley CB, Rodell CB, et al., 2016, 3D Printing of Nanocellulose-Based Hydrogels for Tissue Engineering
Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Applications: A Brief Review. Polymers (Basel), 11:898.
Cross-Linking. ACS Biomater Sci Eng, 2:1743-51. https://doi.org/10.3390/polym11050898
https://doi.org/10.1021/acsbiomaterials.6b00158 27. Altman GH, Horan RL, Martin I, et al., 2002, Cell
16. Assuncao-Silva RC, Gomes ED, Sousa N, et al., 2015, differentiation by mechanical stress. FASEB J, 16:270-2.
Hydrogels and Cell Based Therapies in Spinal Cord Injury https://doi.org/10.1096/fj.01-0656fje
94 International Journal of Bioprinting (2022)–Volume 8, Issue 4

