Page 102 - IJB-8-4
P. 102

3D Bioprinting of Human Neural Tissues
           5.   Soman SS, Vijayavenkataraman S, 2020, Applications of 3D   Regeneration. Stem Cells Int, 2015:948040.
               Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int      https://doi.org/10.1155/2015/948040
               J Bioprint, 6:280.                              17.  Stolberg  S,  McCloskey  KE,  2009,  Can  shear  stress  direct
               https://doi.org/10.18063/ijb.v6i4.280               stem cell fate? Biotechnol Prog, 25:10-9.
           6.   Srubar  WV  3 ,  2021,  Engineered  Living  Materials:      https://doi.org/10.1002/btpr.124
                          rd
               Taxonomies  and  Emerging  Trends.  Trends Biotechnol,   18.  Li C, Ouyang L, Armstrong JP, et al., 2021, Advances in the
               39:574-83.                                          Fabrication of Biomaterials for Gradient Tissue Engineering.
               https://doi.org/10.1016/j.tibtech.2020.10.009       Trends Biotechnol, 39:150-64.
           7.   Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing      https://doi.org/10.1016/j.tibtech.2020.06.005
               of layered brain-like structures using peptide modified gellan   19.  De Santis MM, Alsafadi HN, Tas S, et al., 2021, Extracellular-
               gum substrates. Biomaterials, 67:264-73.            Matrix-Reinforced  Bioinks  for  3D  Bioprinting  Human
               https://doi.org/10.1016/j.biomaterials.2015.07.022  Tissue. Adv Mater, 33:e2005476.
           8.   Joung  D,  Truong  V,  Neitzke  CC,  et al.,  2018,  3D  Printed      https://doi.org/10.1002/adma.202005476
               Stem-Cell Derived Neural Progenitors Generate Spinal Cord   20.  Echeverria  Molina  MI,  Malollari  KG,  Komvopoulos  K,
               Scaffolds. Adv Funct Mater, 28:1801850.             2021, Design Challenges in Polymeric Scaffolds for Tissue
               https://doi.org/10.1002/adfm.201801850              Engineering. Front Bioeng Biotechnol, 9:617141.
           9.   Madhusudanan P, Raju G, Shankarappa S, 2020, Hydrogel      https://doi.org/10.3389/fbioe.2021.617141
               systems and their role in neural tissue engineering. J R Soc   21.  He Y, Hou H, Wang S, et al., 2021, From waste of marine
               Interface, 17:20190505.                             culture to natural patch in cardiac tissue engineering. Bioact
               https://doi.org/10.1098/rsif.2019.0505              Mater, 6:2000-10.
           10.  Bsoul A, Pan S, Cretu E, et al., 2016, Design, microfabrication,      https://doi.org/10.1016/j.bioactmat.2020.12.011
               and  characterization  of  a  moulded  PDMS/SU-8  inkjet   22.  Dunlop MJ, Clemons C, Reiner R, et al., 2020, Towards the
               dispenser  for  a  Lab-on-a-Printer  platform  technology  with   scalable  isolation  of cellulose  nanocrystals  from tunicates.
               disposable microfluidic chip. Lab Chip, 16:3351-61.  Sci Rep, 10:19090.
               https://doi.org/10.1039/c6lc00636a                  https://doi.org/10.1038/s41598-020-76144-9
           11.  Park S, Kim D, Park S, et al., 2018, Nanopatterned Scaffolds   23.  Govindharaj  M, Al  Hashemi  NS,  Soman  SS,  et al.,  2022,
               for Neural Tissue Engineering and Regenerative Medicine.   Bioprinting of bioactive tissue scaffolds from ecologically-
               Adv Exp Med Biol, 1078:421-43.                      destructive fouling tunicates. J Clean Prod, 330:129923.
               https://doi.org/10.1007/978-981-13-0950-2_22        https://doi.org/10.1016/j.jclepro.2021.129923
           12.  Shaqour  B,  Aizawa  J,  Guarch-Pérez  C,  et al.,  2021,   24.  Zhu Q, Li M, Yan C, et al., 2017, Directed Differentiation of
               Coupling Additive Manufacturing with Hot Melt Extrusion   Human Embryonic Stem Cells to Neural Crest Stem Cells,
               Technologies to Validate a Ventilator-Associated Pneumonia   Functional  Peripheral  Neurons,  and  Corneal  Keratocytes.
               Mouse Model. Pharmaceutics, 13:772.                 Biotechnol J, 12:67.
               https://doi.org/10.3390/pharmaceutics13060772       https://doi.org/10.1002/biot.201700067
           13.  Levato R, Jungst T, Scheuring RG, et al., 2020, From Shape to   25.  Vijayavenkataraman  S,  Kannan  S,  Cao  T,  et  al.,  2019,
               Function: The Next Step in Bioprinting. Adv Mater, 32:e1906423.  3D-Printed  PCL/PPy  Conductive  Scaffolds  as  Three-
               https://doi.org/10.1002/adma.201906423              Dimensional  Porous  Nerve  Guide  Conduits  (NGCs)
           14.  Moroni L, Burdick JA, Highley C, et al., 2018, Biofabrication   for  Peripheral  Nerve  Injury  Repair.  Front Bioeng
               strategies for 3D in vitro models and regenerative medicine.   Biotechnol, 7:266.
               Nat Rev Mater, 3:21-37.                             https://doi.org/10.3389/fbioe.2019.00266
               https://doi.org/10.1038/s41578-018-0006-y       26.  Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D Bioprinted
           15.  Ouyang L, Highley CB, Rodell CB, et al., 2016, 3D Printing of   Nanocellulose-Based Hydrogels for  Tissue Engineering
               Shear-Thinning Hyaluronic Acid Hydrogels with Secondary   Applications: A Brief Review. Polymers (Basel), 11:898.
               Cross-Linking. ACS Biomater Sci Eng, 2:1743-51.     https://doi.org/10.3390/polym11050898
               https://doi.org/10.1021/acsbiomaterials.6b00158  27.  Altman  GH,  Horan  RL,  Martin  I,  et  al.,  2002,  Cell
           16.  Assuncao-Silva  RC,  Gomes  ED,  Sousa  N,  et al.,  2015,   differentiation by mechanical stress. FASEB J, 16:270-2.
               Hydrogels and Cell Based Therapies in Spinal Cord Injury      https://doi.org/10.1096/fj.01-0656fje

           94                          International Journal of Bioprinting (2022)–Volume 8, Issue 4
   97   98   99   100   101   102   103   104   105   106   107