Page 151 - IJB-8-4
P. 151

Cardoza, et al.
               Pathway. Aging Cell, 17:e12704.                     https://doi.org/10.1073/pnas.0409009101
               https://doi.org/10.1111/acel.12704              52.  López-Cruz A, Sordillo A, Pokala N, et al., 2019, Parallel
           45.  Stern  S,  Kirst  C,  Bargmann  CI,  2017,  Neuromodulatory   Multimodal  Circuits  Control  an  Innate  Foraging  Behavior.
               Control of Long-term Behavioral Patterns and Individuality   Neuron, 102:407–19.e8.
               Across Development. Cell, 171:1649–62.e10.          https://doi.org/10.1016/j.neuron.2019.01.053
               https://doi.org/10.1016/j.cell.2017.10.041      53.  Ghosh  DD,  Sanders  T,  Hong  S,  et  al.,  2016,  Neural
           46.  Ahadi S, Zhou W, Schüssler-Fiorenza Rose SM, et al., 2020,   Architecture  of  Hunger-dependent  Multisensory  Decision
               Personal Aging Markers and Ageotypes Revealed by Deep   Making in C. elegans. Neuron, 92:1049–62.
               Longitudinal Profiling. Nat Med, 26:83–90.      54.  Schafer WR, 2005, Egg-laying. In: WormBook: The Online
               https://doi.org/10.1038/s41591-019-0719-5           Review of C. elegans Biology. Pasadena, CA: WormBook.
           47.  Schreiber MA, Pierce-Shimomura JT, Chan S, et al., 2010,   55.  Trent C, 1983, Genetic and Behavioral Studies of the Egg-
               Manipulation of Behavioral Decline in Caenorhabditis elegans   laying  System  in  Caenorhabditis  elegans. Thesis  (Ph.  D.).
               with the Rag GTPase raga-1. PLoS Genet, 6:e1000972.  Cambridge, MA: Massachusetts Institute of Technology.
               https://doi.org/10.1371/journal.pgen.1000972    56.  Brenner S, 1974, The Genetics of Caenorhabditis elegans.
           48.  Hills  T,  Brockie  PJ,  Maricq  AV,  2004,  Dopamine  and   Genetics, 77:71–94.
               Glutamate  Control  Area-restricted  Search  Behavior  in   57.  Duran C, Subbian V, Giovanetti MT, et al., 2015, Experimental
               Caenorhabditis elegans. J Neurosci, 24:1217–25.     Desktop 3D Printing using Dual Extrusion and Water-soluble
               https://doi.org/10.1523/JNEUROSCI.1569-03.2004      Polyvinyl Alcohol. Rapid Prototyp J, 21:528–34.
           49.  Tsalik EL, Hobert O, 2003, Functional Mapping of Neurons   58.  Tagami T, Fukushige K, Ogawa E, et al., 2017, 3D Printing
               that  Control  Locomotory  Behavior  in  Caenorhabditis   Factors  Important  for  the  Fabrication  of  Polyvinylalcohol
               elegans. J Neurobiol, 56:178–97.                    Filament-based Tablets. Biol Pharm Bull. 40:357–64.
               https://doi.org/10.1002/neu.10245                   https://doi.org/10.1248/bpb.b16-00878
           50.  Wakabayashi  T,  Kitagawa  I,  Shingai  R,  2004,  Neurons   59.  Wei J, Wang J, Su S, et al., 2015, 3D Printing of an Extremely
               Regulating  the  Duration  of  Forward  Locomotion  in   Tough Hydrogel. RSC Adv, 5:81324–9.
               Caenorhabditis elegans. Neurosci Res, 50:103–11.  60.  Hinton  TJ,  Jallerat  Q,  Palchesko  RN, et al.,  2015, Three-
               https://doi.org/10.1016/j.neures.2004.06.005        dimensional  Printing  of  Complex  Biological  Structures  by
           51.  Gray  JM,  Hill  JJ,  Bargmann  CI,  2005,  A  Circuit  for   Freeform  Reversible  Embedding  of  Suspended  Hydrogels.
               Navigation in Caenorhabditis elegans. Proc Natl Acad Sci U   Sci Adv, 1:e1500758.
               S A, 102:3184–91.                                   https://doi.org/10.1126/sciadv.1500758
























                                                               Publisher’s note
                                                               Whioce  Publishing  remains  neutral  with  regard  to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       143
   146   147   148   149   150   151   152   153   154   155   156