Page 150 - IJB-8-4
P. 150

3D Arenas for C. elegans Behavior
           21.  Tahernia M, Mohammadifar M, Choi S, 2020, Paper-supported   J Bioact Compat Polym, 20:259–69.
               High-throughput 3D Culturing, Trapping, and Monitoring of      https://doi.org/10.1177/0883911505053658
               Caenorhabditis elegans. Micromachines (Basel), 11:99.  33.  Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future
               https://doi.org/10.3390/mi11010099                  Perspectives  in  Extrusion-based  Bioprinting.  Biomaterials,
           22.  Lockery SR, Lawton KJ, Doll JC, et al., 2008, Artificial Dirt:   76:321–43.
               Microfluidic  Substrates  for  Nematode  Neurobiology  and      https://doi.org/10.1016/j.biomaterials.2015.10.076
               Behavior. J Neurophysiol, 99:3136–43.           34.  Kessel  B,  Lee  M,  Bonato A, et al., 2020, 3D Bioprinting
               https://doi.org/10.1152/jn.91327.2007               of  Macroporous  Materials  Based  on  Entangled  Hydrogel
           23.  Lee TY, Yoon KH, Lee JI, 2016, Cultivation of Caenorhabditis   Microstrands. Adv Sci, 7:2001419.
               elegans in Three Dimensions in the Laboratory. J Vis Exp,   35.  Stanton MM, Samitier J, Sánchez S, 2015, Bioprinting of 3D
               118:55048.                                          Hydrogels. Lab Chip, 15:3111–5.
               https://doi.org/10.3791/55048                       https://doi.org/10.1039/c5lc90069g
           24.  Jiang  T,  Munguia-Lopez  JG,  Flores-Torres  S, et al., 2019,   36.  Fan R, Piou M, Darling E, et al., 2016, Bio-printing Cell-laden
               Extrusion Bioprinting of Soft Materials: An Emerging Technique   Matrigel–agarose Constructs. J Biomater Appl, 31:684–92.
               for Biological Model Fabrication. Appl Phys Rev, 6:011310.     https://doi.org/10.1177/0885328216669238
               https://doi.org/10.1063/1.5059393               37.  Fan  D,  Staufer  U,  Accardo  A,  2019,  Engineered  3D
           25.  Ng WL, Huang X, Shkolnikov V, et al., 2021, Controlling   Polymer and Hydrogel Microenvironments for Cell Culture
               Droplet Impact Velocity and Droplet Volume: Key Factors to   Applications. Bioengineering (Basel), 6:113.
               Achieving High Cell Viability in Sub-nanoliter Droplet-based      https://doi.org/10.3390/bioengineering6040113
               Bioprinting. Int J Bioprint, 8:424.             38.  Gross BC, Erkal JL, Lockwood SY, et al., 2014, Evaluation
               https://doi.org/10.18063/ijb.v8i1.424               of 3D Printing and its Potential Impact on Biotechnology and
           26.  Li  X,  Liu  B,  Pei  B, et  al.,  2020,  Inkjet  Bioprinting  of   the Chemical Sciences. Anal Chem, 86:3240–53.
               Biomaterials. Chem Rev, 120:10793–833.              https://doi.org/10.1021/ac403397r
               https://doi.org/10.1021/acs.chemrev.0c00008     39.  Landers R, Hübner U, Schmelzeisen R, et al., 2002, Rapid
           27.  Zhuang  P,  Ng  WL,  An  J, et al.,  2019,  Layer-by-layer   Prototyping  of  Scaffolds  Derived  from  Thermoreversible
               Ultraviolet Assisted  Extrusion-based  (UAE)  Bioprinting  of   Hydrogels  and  Tailored  for  Applications  in  Tissue
               Hydrogel Constructs with High Aspect Ratio for Soft Tissue   Engineering. Biomaterials, 23:4437–47.
               Engineering Applications. PLoS One, 14:e0216776.     https://doi.org/10.1016/s0142-9612(02)00139-4
               https://doi.org/10.1371/journal.pone.0216776    40.  White  JG,  Southgate  E,  Thomson  JN, et  al., 1986,
           28.  Li W, Mille LS, Robledo JA, et al., 2020, Recent Advances   The  Structure  of  the  Nervous  System  of  the  Nematode
               in  Formulating  and  Processing  Biomaterial  Inks  for  Vat   Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci,
               Polymerization-based  3D  Printing.  Adv  Healthc  Mater,   314:1–340.
               9:2000156.                                      41.  Schulenburg  H,  Félix  MA,  2017,  The  Natural  Biotic
               https://doi.org/10.1002/adhm.202000156              Environment of Caenorhabditis elegans. Genetics, 206:55-86.
           29.  Tavana  H,  Mosadegh  B,  Takayama  S,  2010,  Polymeric      https://doi.org/10.1534/genetics.116.195511
               Aqueous  Biphasic  Systems  for  Non-contact  Cell  Printing   42.  Kauffman AL, Ashraf  JM,  Corces-Zimmerman  MR, et al.,
               on Cells: Engineering Heterocellular Embryonic Stem Cell   2010, Insulin Signaling and Dietary Restriction Differentially
               Niches. Adv Mater, 22:2628–31.                      Influence  the  Decline  of  Learning  and  Memory  with Age.
               https://doi.org/10.1002/adma.200904271              PLoS Biol, 8:e1000372.
           30.  Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink Properties      https://doi.org/10.1371/journal.pbio.1000372
               and Printability for Extrusion Printing Living Cells. Biomater   43.  Hsu  AL,  Feng  Z,  Hsieh  MY, et al.,  2009,  Identification  by
               Sci, 1:763–73.                                      Machine  Vision  of  the  Rate  of  Motor  Activity  Decline  as  a
               https://doi.org/10.1039/C3BM00012E                  Lifespan Predictor in C. elegans. Neurobiol Aging, 30:1498–503.
           31.  He Y, Yang F, Zhao H, et al., 2016, Research on the Printability      https://doi.org/10.1016/j.neurobiolaging.2007.12.007
               of Hydrogels in 3D Bioprinting. Sci Rep, 6:29977.  44.  Newell  Stamper  BL,  Cypser  JR,  Kechris  K, et  al., 2018,
           32.  Yan Y, Wang X, Xiong Z, et al., 2005, Direct Construction   Movement  Decline  Across  Lifespan  of  Caenorhabditis
               of a Three-dimensional Structure with Cells and Hydrogel.   elegans  Mutants  in  the  Insulin/Insulin-like  Signaling

           142                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   145   146   147   148   149   150   151   152   153   154   155